Yeoh / Yuen | Computational Fluid Dynamics in Fire Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, 544 Seiten

Yeoh / Yuen Computational Fluid Dynamics in Fire Engineering

Theory, Modelling and Practice
1. Auflage 2009
ISBN: 978-0-08-057003-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Theory, Modelling and Practice

E-Book, Englisch, 544 Seiten

ISBN: 978-0-08-057003-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future.
Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures.
No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems.
·Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering
·Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators
·Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software.

Guan Heng Yeoh is an Associate Professor at the School of Mechanical and Manufacturing Engineering, UNSW, and a Senior Research Scientist at ANSTO. He is the founder and Editor of the Journal of Computational Multiphase Flows and the Group Leader of Computational Thermal-Hydraulics of OPAL Research Reactor, ANSTO. He has approximately 180 publications including 7 books, 10 book chapters, 83 journal articles, and 80 conference papers with an H-index 16 and over 800 citations. His research interests are computational fluid dynamics (CFD); numerical heat and mass transfer; turbulence modelling using Reynolds averaging and large eddy simulation; combustion, radiation heat transfer, soot formation and oxidation, and solid pyrolysis in fire engineering; fundamental studies in multiphase flows: free surface, gas-particle, liquid-solid (blood flow and nanoparticles), and gas-liquid (bubbly, slug/cap, churn-turbulent, and subcooled nucleate boiling flows); computational modelling of industrial systems of single-phase and multiphase flows.

Yeoh / Yuen Computational Fluid Dynamics in Fire Engineering jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice;4
3;Copyright;5
4;Table of Contents;6
5;Preface;12
6;Chapter 1: Introduction;14
6.1;1.1 Historical Development of Fire Modeling;14
6.2;1.2 Overview of Current Trends in Fire Modeling;17
6.3;1.3 Review of Major Fire Disasters and Impact on Fire Modeling;24
6.3.1;1.3.1 Kings Cross Fire;24
6.3.2;1.3.2 World Trade Center Fire;25
6.4;1.4 Application of Fire Dynamics Tools in Practice;30
6.5;1.5 Validation and Verification of Fire Dynamics Tools;36
6.6;1.6 Scope of the Book;39
7;Chapter 2: Field Modeling Approach;42
7.1;Part I Mathematical Equations;42
7.1.1;2.1 Computational Fluid Dynamics: Brief Introduction;42
7.1.2;2.2 Computational Fluid Dynamics in Field Modeling;44
7.1.3;2.3 Equation of State;48
7.1.4;2.4 Equations of Motion;50
7.1.4.1;2.4.1 Continuity Equation;51
7.1.4.2;2.4.2 Momentum Equation;53
7.1.4.3;2.4.3 Energy Equation;59
7.1.4.4;2.4.4 Scalar Equation;63
7.1.5;2.5 Differential and Integral Forms of the Transport Equations;65
7.1.6;2.6 Physical Interpretation of Boundary Conditions for Field Modeling;70
7.1.7;2.7 Numerical Approximations of Transport Equations for Field Modeling;72
7.1.7.1;2.7.1 Discretisation Methods;74
7.1.7.1.1;2.7.1.1 Steady Flows ;74
7.1.7.1.2;2.7.1.2 Unsteady Flows;82
7.1.7.2;2.7.2 Solution Algorithms;84
7.1.7.2.1;2.7.2.1 Matrix Solvers;84
7.1.7.2.2;2.7.2.2 Pressure-Velocity Linkage Methods;87
7.1.7.3;2.7.3 Boundary Conditions;94
7.1.8;2.8 Summary;96
7.2;Part II Turbulence;98
7.2.1;2.9 What Is Turbulence?;98
7.2.2;2.10 Overview of Turbulence Modeling Approaches;99
7.2.3;2.11 Additional Equations for Turbulent Flow-Standard k-epsi Turbulence Model;103
7.2.4;2.12 Other Turbulence Models;106
7.2.4.1;2.12.1 Variant of Standard k-epsi Turbulence Models;109
7.2.4.2;2.12.2 Reynolds Stress Models;115
7.2.5;2.13 Near-Wall Treatments;119
7.2.6;2.14 Setting Boundary Conditions;123
7.2.7;2.15 Guidelines for Setting Turbulence Models in Field Modeling;126
7.2.8;2.16. Worked Examples on the Application of Turbulence Models in Field Modeling;127
7.2.8.1;2.16.1 Single-Room Compartment Fire;127
7.2.8.2;2.16.2 Influence of Gaps of Fire Resisting Doors on Smoke Spread;134
7.2.9;2.17 Summary;144
8;Chapter 3: Additional Considerations in Field Modeling;148
8.1;Part III Combustion;148
8.1.1;3.1 Turbulent Combustion in Fires;148
8.1.2;3.2 Detailed Chemistry versus Simplified Chemistry;152
8.1.3;3.3 Overview of Combustion Modeling Approaches;164
8.1.4;3.4 Combustion Models;166
8.1.4.1;3.4.1 Generalized Finite-Rate Formulation;166
8.1.4.1.1;3.4.1.1 Background Theory;166
8.1.4.1.2;3.4.1.2 Species Transport Equations;167
8.1.4.1.3;3.4.1.3 Laminar Finite-Rate Chemistry;174
8.1.4.1.4;3.4.1.4 Eddy Break-up and Eddy Dissipation;176
8.1.4.2;3.4.2 Combustion Based on Conserved Scalar;181
8.1.4.2.1;3.4.2.1 Description of Approach;181
8.1.4.2.2;3.4.2.2 Definition of Mixture Fraction;183
8.1.4.2.3;3.4.2.3 Flame Sheet Approximation;185
8.1.4.2.4;3.4.2.4 State Relationships;188
8.1.4.2.5;3.4.2.5 Probability Density Function (PDF) of Turbulence-Chemistry;192
8.1.4.2.6;3.4.2.6 Laminar Flamelet Approach;200
8.1.5;3.5 Guidelines for Selecting Combustion Models in Field Modeling;207
8.1.6;3.6 Worked Examples on the Application of Combustion Models in Field Modeling;209
8.1.6.1;3.6.1 Single-Room Compartment Fire;209
8.1.6.2;3.6.2 Two-Room Compartment Fire;215
8.1.7;3.7 Summary;221
8.1.8;Part IV Radiation;222
8.1.9;3.8 Radiation in Fires;222
8.1.10;3.9 Radiative Transfer Equation;225
8.1.11;3.10 Radiation Properties of Combustion Products;228
8.1.11.1;3.10.1 Gray Gas Assumption;229
8.1.11.2;3.10.2 Weighted Sum of Gray Gases Model;236
8.1.11.3;3.10.3 Other Models;240
8.1.12;3.11 Radiation Methods for Field Modeling;243
8.1.12.1;3.11.1 Monte Carlo;246
8.1.12.2;3.11.2 P-1 Radiation Model;250
8.1.12.3;3.11.3 Discrete Transfer Radiative Model;253
8.1.12.4;3.11.4 Discrete Ordinates Model;256
8.1.12.5;3.11.5 Finite Volume Method;263
8.1.13;3.12 Guidelines for Selecting Radiation Models in Field Modeling;265
8.1.14;3.13 Worked Examples on the Application of Radiation Models in Field Modeling;266
8.1.14.1;3.13.1 Single-Room Compartment Fire;266
8.1.14.2;3.13.2 Two-Room Compartment Fire;273
8.1.15;3.14 Summary;277
9;Chapter 4: Further Considerations in Field Modeling;280
9.1;Part V Soot Production;280
9.1.1;4.1 Importance of Soot Radiation;280
9.1.2;4.2 Overview and Limitations of Soot Modeling;282
9.1.3;4.3 Soot Models for Field Modeling;285
9.1.3.1;4.3.1 Single-Step Empirical Rate;285
9.1.3.2;4.3.2 Semi-Empirical Approach;289
9.1.4;4.4 Population Balance Approach to Soot Formation;298
9.1.4.1;4.4.1 What Is Population Balance?;298
9.1.4.2;4.4.2 Formulation of Transport Equations and Rate Mechanisms;301
9.1.5;4.5 Guidelines for Selecting Soot Models in Fire Modeling;312
9.1.6;4.6 Worked Examples on the Application of Soot Models in Field Modeling;313
9.1.6.1;4.6.1 Two-Room Compartment Fire;313
9.1.6.2;4.6.2 Multi-Room Compartment Fire;320
9.1.7;4.7 Summary;326
9.2;Part VI Pyrolysis;327
9.2.1;4.8 Importance of Pyrolysis in Fires;327
9.2.2;4.9 Phenomenological Understanding of Pyrolysis Processes;330
9.2.3;4.10 Physico-Chemical Description of Pyrolysis Processes;332
9.2.3.1;4.10.1 Pyrolysis of Cellulose;335
9.2.3.2;4.10.2 Pyrolysis of Hemicellulose;335
9.2.3.3;4.10.3 Pyrolysis of Lignins;336
9.2.3.4;4.10.4 Pyrolysis of Wood;336
9.2.4;4.11 Formulation of Governing Equations;337
9.2.4.1;4.11.1 Conservation of Energy for Wood Pyrolysis;337
9.2.4.2;4.11.2 Conservation of Mass for Wood Pyrolysis;339
9.2.4.3;4.11.3 Modeling Wood Pyrolysis Source Terms;342
9.2.4.4;4.11.4 Thermophysical Properties of Wood Pyrolysis;345
9.2.5;4.12 Practical Guidelines to Pyrolysis Models in Field Modeling;351
9.2.6;4.13 Worked Example on Ignition of Combustible of Charring Material in a Cone Calorimeter;352
9.2.7;4.14 Worked Example on Fire Growth and Flame Spread Over Combustible Wall Lining in a Single-Room Compartment;365
9.2.8;4.15 Summary;376
10;Chapter 5: Advance Technique in Field Modeling;380
10.1;5.1 Next Stages of Development and Application;380
10.2;5.2 Alternative Approach to Handling Turbulence;382
10.2.1;5.2.1 Direct Numerical Simulation (DNS);382
10.2.2;5.2.2 Large Eddy Simulation (LES);387
10.3;5.3 Favre-Averaged Navier-Stokes versus Large Eddy Simulation;406
10.4;5.4 Formulation of Numerical Algorithm;408
10.4.1;5.4.1 Explicit Predictor-Corrector Scheme;408
10.4.2;5.4.2 Combustion Modeling;415
10.4.3;5.4.3 Inclusion of Other Physical Models;421
10.5;5.5 Worked Examples on Large Eddy Simulation Applications;423
10.5.1;5.5.1 A Freestanding Buoyant Fire;423
10.5.2;5.5.2 Fire in a Single-room Compartment;431
10.6;5.6 Summary;435
11;Chapter 6: Other Challenges in Fire Safety Engineering;438
11.1;6.1 Fire Safety Evaluation and Assessment;438
11.1.1;6.1.1 Deviation from Prescriptive-Based Statutory Requirements;438
11.1.2;6.1.2 Adopting Performance-Based Methodologies;439
11.2;6.2 Overview of Emerging Technique in Field Modeling;445
11.3;6.3 Overview of Evacuation Modeling;452
11.4;6.4 Overview of Probabilistic Approach;454
11.5;6.5 Case Studies;456
11.5.1;6.5.1 The Predictive Capability of Artificial Neural Network Fire Model in a Single-Room Compartment Fire;457
11.5.2;6.5.2 The Application of CFD-Based Fire Model and Evacuation Model for Fire Safety Evaluation and Assessment;463
11.6;6.6 Future Developments in Fire Predictive and Assessment Models;470
11.7;6.7 Summary;472
12;Appendix A: Higher-Order Differencing Schemes and Time-Marching Methods;476
12.1;A.1 Higher-Order Differencing Schemes;476
12.2;A.2 Total Variable Diminishing (TVD) Schemes;478
12.3;A.3 Higher-Order Time-Marching Methods;482
13;Appendix B: Algebraic Equation System and CFD-Based Fire Model;486
13.1;B.1 Conversion of Governing Equation to Algebraic Equation System Using the Finite Volume Method;486
13.2;B.2 CFD-Based Fire Model;491
14;Appendix C: Advanced Combustion Modeling;492
14.1;C.1 Probability Density Function Method;492
14.2;C.2 Conditional Moment Closure;493
15;Appendix D: Relevant Tables for Combustion and Radiation Modeling;496
16;References;504
17;Further Suggested Reading;528
18;Index;530



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.