Buch, Englisch, Band 228, 546 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 9575 g
Reihe: International Series in Operations Research & Management Science
Buch, Englisch, Band 228, 546 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 9575 g
Reihe: International Series in Operations Research & Management Science
ISBN: 978-3-319-18841-6
Verlag: Springer International Publishing
New to this edition is a chapter devoted to Conic Linear Programming, a powerful generalization of Linear Programming. Indeed, many conic structures are possible and useful in a variety of applications. It must be recognized, however, that conic linear programming is an advanced topic, requiring special study. Another important topic is an accelerated steepest descent method that exhibits superior convergence properties, and for this reason, has become quite popular. The proof of the convergence property for both standard and accelerated steepest descent methods are presented in Chapter 8. As in previous editions, end-of-chapter exercises appear for all chapters.
From the reviews of the Third Edition:
“… this very well-written book is a classic textbook in Optimization. It should be present in the bookcase of each student, researcher, and specialist from the host of disciplines from which practical optimization applications are drawn.” (Jean-Jacques Strodiot, Zentralblatt MATH, Vol. 1207, 2011)
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Nichtlineare Wissenschaft
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik Mathematik Operations Research
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Mathematische Modellierung
Weitere Infos & Material
Introduction.- Part I Linear Programming.- Basic Properties of Linear Programs.- The Simplex Method.- Duality and Complementarity.- Interior-Point Methods.- Conic Linear Programming.- Part II Unconstrained Problems.- Basic Properties of Solutions and Algorithms.- Basic Descent Methods.- Conjugate Direction Methods.- Quasi-Newton Methods.- Part III Constrained Minimization.- Constrained Minimization Conditions.- Primal Methods.- Penalty and Barrier Methods.- Duality and Dual Methods.- Primal-Dual Methods.- Appendix A: Mathematical Review.- Appendix B: Convex Sets.- Appendix C: Gaussian Elimination.- Appendix D: Basic Network Concepts.