Buch, Englisch, 352 Seiten, Format (B × H): 164 mm x 241 mm, Gewicht: 634 g
New Models, Methods, and Empirical Applications
Buch, Englisch, 352 Seiten, Format (B × H): 164 mm x 241 mm, Gewicht: 634 g
Reihe: Chapman & Hall/CRC Interdisciplinary Statistics
ISBN: 978-1-4665-0752-4
Verlag: CRC Press
The book makes two essential contributions to quantitative studies of time-related change. Through the introduction of the GLMM framework, it shows how innovative estimation methods and new model specifications can be used to tackle the "model identification problem" that has hampered the development and empirical application of APC analysis. The book also addresses the major criticism against APC analysis by explaining the use of new models within the GLMM framework to uncover mechanisms underlying age patterns and temporal trends.
Encompassing both methodological expositions and empirical studies, this book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. It compares new and existing models and methods and provides useful guidelines on how to conduct APC analysis. For empirical illustrations, the text incorporates examples from a variety of disciplines, such as sociology, demography, and epidemiology. Along with details on empirical analyses, software and programs to estimate the models are available on the book’s web page.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction. Why Cohort Analysis? APC Analysis of Data from Three Common Research Designs. Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework. APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator. APC Accounting/Multiple Classification Model, Part II: Empirical Applications. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses. Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data. Directions for Future Research and Conclusion. Index.