Buch, Englisch, Band 39, 454 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g
Theory, Methods and Applications
Buch, Englisch, Band 39, 454 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g
Reihe: Nonconvex Optimization and Its Applications
ISBN: 978-1-4419-4825-0
Verlag: Springer US
With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis.
Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can alsobe recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
Weitere Infos & Material
I Symmetry in Convex Systems.- 1. Mono-Duality in Static Systems.- 2. Bi-Duality in Dynamical Systems.- II Symmetry Breaking: Triality Theory in Nonconvex Systems.- 3. Tri-Duality in Nonconvex Systems.- 4. Multi-Duality and Classifications of General Systems.- III Duality in Canonical Systems.- 5. Duality in Geometrically Linear Systems.- 6. Duality in Finite Deformation Systems.- 7. Applications, Open Problems and Concluding Remarks.- Appendices.- A—Duality in Linear Analysis.- A.1 Linear spaces and duality.- A.2 Bilinear Forms and Inner Product Spaces.- A.3 Linear functionals and Dual spaces.- B—Linear Operators and Adjointness.- B.1 Linear Operators.- B.2 Adjoint Operators.- B.3 Duality Relations for Range and Nullspace.- C—Nonlinear Operators.- C.1 Operators on Finite-Dimensional Spaces.- C.2 Monotone and Pseudo-Monotone Operators on Banach Spaces.- C.3 Potential Operators and Duality Mappings.- References.