Buch, Englisch, 120 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 242 g
Machine learning for Identifying High Utilizers
Buch, Englisch, 120 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 242 g
Reihe: Chapman & Hall/CRC Big Data Series
ISBN: 978-1-032-08868-6
Verlag: Chapman and Hall/CRC
Key Features:
- Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes
- Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers
- Presents descriptive data driven methods for the high utilizer population
- Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Dienstleistungssektor & Branchen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Mathematik | Informatik EDV | Informatik Informatik
Weitere Infos & Material
Introduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utlizers. Residuals Analysis for Identifying High Utilizers.Machine Learning Results for High Utilizers.