Yang | Benchmarks and Hybrid Algorithms in Optimization and Applications | Buch | 978-981-99-3969-5 | sack.de

Buch, Englisch, 246 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 599 g

Reihe: Springer Tracts in Nature-Inspired Computing

Yang

Benchmarks and Hybrid Algorithms in Optimization and Applications


2023
ISBN: 978-981-99-3969-5
Verlag: Springer Nature Singapore

Buch, Englisch, 246 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 599 g

Reihe: Springer Tracts in Nature-Inspired Computing

ISBN: 978-981-99-3969-5
Verlag: Springer Nature Singapore


This book is specially focused on the latest developments and findings on hybrid algorithms and benchmarks in optimization and their applications in sciences, engineering, and industries. The book also provides some comprehensive reviews and surveys on implementations and coding aspects of benchmarks. The book is useful for Ph.D. students and researchers with a wide experience in the subject areas and also good reference for practitioners from academia and industrial applications.

Yang Benchmarks and Hybrid Algorithms in Optimization and Applications jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Nature-Inspired Algorithms: Overview and Open Problems.- 2. Hybrid algorithms: Components, Hybridization and Examples.- 3. Role of Benchmarks in Optimization.- 4. Travelling Salesman Problems: Symmetric and Asymmetric Cases.- 5. Scheduling Problems: Benchmarks and Implementation.- 6. Active Learning Solution for Semantic Labelling of Earth Observation Satellite Images.- 7. Development of an Ensemble Modelling Framework for Data Analytics in Supply Chain Management.- 8. An Application of Data Mining to Build the OD Matrix in Developing Countries: An Argentinean Case Study.- 9. Deep Learning-based Efficient Customer Segmentation for Online Retail Business.- 10. Application of a Routing Model with a Time Limit for the Collection of RSU in an Argentinian City.- 11. Network Weakness Detection: Case Studies.- 12. Unknown Target Searching by Swarm Robots: A Case Study.


Xin-she Yang obtained his D.Phil. in Applied Mathematics from the University of Oxford. He then worked at Cambridge University and National Physical Laboratory (UK) as Senior Research Scientist. Now he is Reader at Middlesex University London and Elected Fellow of Institute of Mathematics and its Applications (FIMA). He was IEEE CIS Chair for the Task Force on Business Intelligence and Knowledge Management (2015-2020). He is also Editor-in-Chief of International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO). With more than 20 years of teaching and research experience, he has authored more than 10 books and edited more than 15 books. He has published more than 250 peer-reviewed research papers with nearly 75,000 citations. According to Clarivate Analytics/Web of Sciences, he has been on the prestigious list of highly cited researchers for seven consecutive years (2016-2022).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.