Yaneva / von Davier | Advancing Natural Language Processing in Educational Assessment | Buch | 978-1-032-20390-4 | sack.de

Buch, Englisch, 260 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 694 g

Reihe: NCME APPLICATIONS OF EDUCATIONAL MEASUREMENT AND ASSESSMENT

Yaneva / von Davier

Advancing Natural Language Processing in Educational Assessment


1. Auflage 2023
ISBN: 978-1-032-20390-4
Verlag: Routledge

Buch, Englisch, 260 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 694 g

Reihe: NCME APPLICATIONS OF EDUCATIONAL MEASUREMENT AND ASSESSMENT

ISBN: 978-1-032-20390-4
Verlag: Routledge


Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond. Spanning historical context, validity and fairness issues, emerging technologies, and implications for feedback and personalization, these chapters represent the most robust treatment yet about NLP for education measurement researchers, psychometricians, testing professionals, and policymakers.

The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 license.

Yaneva / von Davier Advancing Natural Language Processing in Educational Assessment jetzt bestellen!

Zielgruppe


Postgraduate and Professional

Weitere Infos & Material


Preface

by Victoria Yaneva and Matthias von Davier

Section I: Automated Scoring

Chapter 1: The Role of Robust Software in Automated Scoring

by Nitin Madnani, Aoife Cahill, and Anastassia Loukina

Chapter 2: Psychometric Considerations when Using Deep Learning for Automated Scoring

by Susan Lottridge, Chris Ormerod, and Amir Jafari

Chapter 3: Speech Analysis in Assessment

by Jared C. Bernstein and Jian Cheng

Chapter 4: Assessment of Clinical Skills: A Case Study in Constructing an NLP-Based Scoring System for Patient Notes

by Polina Harik, Janet Mee, Christopher Runyon, and Brian E. Clauser

Section II: Item Development

Chapter 5: Automatic Generation of Multiple-Choice Test Items from Paragraphs Using Deep Neural Networks

by Ruslan Mitkov, Le An Ha, Halyna Maslak, Tharindu Ranasinghe, and Vilelmini Sosoni

Chapter 6: Training Optimus Prime, M.D.: A Case Study of Automated Item Generation using Artificial Intelligence – From Fine-Tuned GPT2 to GPT3 and Beyond

by Matthias von Davier

Chapter 7: Computational Psychometrics for Digital-first Assessments: A Blend of ML and Psychometrics for Item Generation and Scoring

by Geoff LaFlair, Kevin Yancey, Burr Settles, Alina A von Davier

Section III: Validity and Fairness

Chapter 8: Validity, Fairness, and Technology-based Assessment

by Suzanne Lane

Chapter 9: Evaluating Fairness of Automated Scoring in Educational Measurement

by Matthew S. Johnson and Daniel F. McCaffrey

Section IV: Emerging Technologies

Chapter 10: Extracting Linguistic Signal from Item Text and Its Application to Modeling Item Characteristics

by Victoria Yaneva, Peter Baldwin, Le An Ha, and Christopher Runyon

Chapter 11: Stealth Literacy Assessment: Leveraging Games and NLP in iSTART

by Ying Fang, Laura K. Allen, Rod D. Roscoe, and Danielle S. McNamara

Chapter 12: Measuring Scientific Understanding Across International Samples: The Promise of Machine Translation and NLP-based Machine Learning Technologies

by Minsu Ha and Ross H. Nehm

Chapter 13: Making Sense of College Students’ Writing Achievement and Retention with Automated Writing Evaluation

by Jill Burstein, Daniel McCaffrey, Steven Holtzman & Beata Beigman Klebanov

Contributor Biographies


Victoria Yaneva is Senior NLP Scientist at the National Board of Medical Examiners, USA.

Matthias von Davier is Monan Professor of Education in the Lynch School of Education and Executive Director of TIMSS & PIRLS International Study Center at Boston College, USA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.