Yan | Inversion and Data Assimilation in Remote Sensing | Buch | 978-1-78945-142-9 | sack.de

Buch, Englisch, 256 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 531 g

Yan

Inversion and Data Assimilation in Remote Sensing

Estimation of Geophysical Parameters
1. Auflage 2024
ISBN: 978-1-78945-142-9
Verlag: Wiley

Estimation of Geophysical Parameters

Buch, Englisch, 256 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 531 g

ISBN: 978-1-78945-142-9
Verlag: Wiley


Remote sensing data are now the primary sources for observing Earth and the Universe. Data inversion and assimilation techniques are the main tools for estimating and predicting the geophysical parameters that characterize the evolution of our planet and the Universe, using remote sensing data.

Inversion and Data Assimilation in Remote Sensing explores recent advances in the inversion and assimilation of remote sensing data. It presents traditional and current neural network methods, as well as a number of topics where these methods have been developed or adapted to suit the specific nature of the field. The assimilation section covers prediction problems in volcanology and glaciology. Lastly, the inversion section covers biomass inversion using SAR images, bio-physio-hydrological inversion in coastal areas using multi- and hyperspectral images, and astrophysical inversion using telescope data.

Yan Inversion and Data Assimilation in Remote Sensing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xi
Yajing YAN

Part 1 Data Assimilation 1

Chapter 1 Methods for Assimilation of Observations: Application to Numerical Weather Prediction 3
Olivier TALAGRAND

1.1. Introduction 3

1.2. The linear and Gaussian case 6

1.2.1. Variational form 8

1.3. Optimal interpolation – three-dimensional variational assimilation 10

1.4. Taking the dynamics of the flow into account 12

1.4.1. The Kalman Filter 16

1.4.2. Four-dimensional variational assimilation 22

1.4.3. Ensemble methods 27

1.4.4. Stability and instability 29

1.5. Particle filters 30

1.6. Artificial intelligence 32

1.7. Extensions and applications 33

1.8. References 34

Chapter 2 Ensemble Data Assimilation in Volcanology 39
Mary Grace BATO, Virginie PINEL and Yajing YAN

2.1. Volcano monitoring and eruption forecasting 39

2.2. Ensemble data assimilation 42

2.2.1. Volcanic data assimilation using the ensemble Kalman filter 43

2.2.2. The dynamic model 44

2.2.3. Data observations 47

2.3. Potentiality assessment of volcanic data assimilation for eruption forecasting based on synthetic simulations 50

2.3.1. EnKF formulation 51

2.3.2. Synthetic observations 52

2.3.3. Experiment setup 53

2.3.4. Results and discussions 55

2.3.5. Implications to real-time volcano monitoring 61

2.4. Application: The 2004–2014 inter-eruptive activity at Grímsvötn volcano, Iceland 62

2.4.1. Implications of the change in magma supply rate at Grímsvötn 64

2.5. Conclusions and outlook 65

2.6. Acknowledgments 66

2.7. References 66

Chapter 3 Data Assimilation in Glaciology 71
Fabien GILLET-CHAULET

3.1. Introduction 71

3.2. Predicting a paradigm shift for polar ice-sheet models 73

3.3. Principles of ice sheet dynamics 75

3.4. Parameter estimation 78

3.4.1. Variational methods 79

3.4.2. Bayesian methods 85

3.4.3. Classical inversion problems 85

3.5. State and parameter estimation 90

3.6. Conclusions and outlook 92

3.7. References 93

Part 2 Inversion 103

Chapter 4 Probabilistic Inversion Methods 105
Alexandrine GESRET

4.1. Local methods versus global methods 105

4.2. Bayesian formalism 107

4.3. Model parameterization 111

4.3.1. Layered models 112

4.3.2. Wavelets 113

4.3.3. Voronoi tessellation 115

4.3.4. The Johnson Mehl tessellation 116

4.4. Markov chain Monte Carlo-based sampling algorithms 118

4.4.1. The Metropolis-Hastings algorithm 121

4.4.2. Simulated annealing 123

4.4.3. Interacting Markov chains 125

4.4.4. The reversible jump Metropolis-Hastings algorithm 129

4.5. Conclusions and outlook 132

4.6. References 134

Chapter 5 Modeling Radar Backscattering from Forests: A First Step to Inversion 139
Elise COLIN and Laetitia THIRION-LEFEVRE

5.1. Introduction 139

5.2. Vegetation model historical background 141

5.2.1. Evolution of measurements and their understanding 142

5.2.2. What should be remembered? And what prospects? 145

5.3. How to choose a model for inversion? 146

5.3.1. Different inversion approaches 146

5.3.2. Choosing according to the intended purpose 148

5.3.3. Validity and validation domain 152

5.3.4. Summarizing the choice of model 153

5.4. Biomass inversion 154

5.4.1. Challenges 154

5.4.2. Regression of backscatter coefficient curves 155

5.4.3. RVoG model in PolInSAR 156

5.4.4. Approximate model inversion 158

5.4.5. Metamodels 159

5.4.6. What should be remembered and expected? 160

5.5. Conclusions and outlook 160

5.6. References 163

Chapter 6 Radiative Transfer Model Inversion and Application to Coastal Observation 169
Touria BAJJOU


Yajing Yan is a lecturer at the LISTIC laboratory, Université Savoie Mont Blanc, France. Her research focuses on multi-temporal InSAR analysis, remote sensing data fusion and assimilation, and machine learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.