Yan | Hands-On Data Science with Anaconda | E-Book | sack.de
E-Book

E-Book, Englisch, 364 Seiten

Yan Hands-On Data Science with Anaconda

Utilize the right mix of tools to create high-performance data science applications
1. Auflage 2018
ISBN: 978-1-78883-473-5
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Utilize the right mix of tools to create high-performance data science applications

E-Book, Englisch, 364 Seiten

ISBN: 978-1-78883-473-5
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Hands-On Data Science with Anaconda".

Yan Hands-On Data Science with Anaconda jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Table of Contents - Ecosystem of Anaconda
- Anaconda Installation
- Data basics

- Data visualization

- Statistics modeling in Anaconda
- Managing packages
- Optimization in Anaconda
- Unsupervised Learning in Anaconda
- Supervised Learning in Anaconda
- Predictive Data Analytics: Modelling and Validation
- Anaconda Cloud
- Distributed computing, parallel computing and HPCC


Yan Yuxing:

Yuxing Yan graduated from McGill University with a PhD in finance. Over the years, he has been teaching various finance courses at eight universities: McGill University and Wilfrid Laurier University (in Canada), Nanyang Technological University (in Singapore), Loyola University of Maryland, UMUC, Hofstra University, University at Buffalo, and Canisius College (in the US). His research and teaching areas include: market microstructure, open-source finance and financial data analytics. He has 22 publications including papers published in the Journal of Accounting and Finance, Journal of Banking and Finance, Journal of Empirical Finance, Real Estate Review, Pacific Basin Finance Journal, Applied Financial Economics, and Annals of Operations Research. He is good at several computer languages, such as SAS, R, Python, Matlab, and C. His four books are related to applying two pieces of open-source software to finance: Python for Finance (2014), Python for Finance (2nd ed., expected 2017), Python for Finance (Chinese version, expected 2017), and Financial Modeling Using R (2016). In addition, he is an expert on data, especially on financial databases. From 2003 to 2010, he worked at Wharton School as a consultant, helping researchers with their programs and data issues. In 2007, he published a book titled Financial Databases (with S.W. Zhu). This book is written in Chinese. Currently, he is writing a new book called Financial Modeling Using Excel — in an R-Assisted Learning Environment. The phrase "R-Assisted" distinguishes it from other similar books related to Excel and financial modeling. New features include using a huge amount of public data related to economics, finance, and accounting; an efficient way to retrieve data: 3 seconds for each time series; a free financial calculator, showing 50 financial formulas instantly, 300 websites, 100 YouTube videos, 80 references, paperless for homework, midterms, and final exams; easy to extend for instructors; and especially, no need to learn R.Yan James:

James Yan is an undergraduate student at the University of Toronto (UofT), currently double-majoring in computer science and statistics. He has hands-on knowledge of Python, R, Java, MATLAB, and SQL. During his study at UofT, he has taken many related courses, such as Methods of Data Analysis I and II, Methods of Applied Statistics, Introduction to Databases, Introduction to Artificial Intelligence, and Numerical Methods, including a capstone course on AI in clinical medicine.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.