Yamada / Nagao | Padé Methods for Painlevé Equations | Buch | 978-981-16-2997-6 | sack.de

Buch, Englisch, Band 42, 90 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 166 g

Reihe: SpringerBriefs in Mathematical Physics

Yamada / Nagao

Padé Methods for Painlevé Equations


1. Auflage 2021
ISBN: 978-981-16-2997-6
Verlag: Springer Nature Singapore

Buch, Englisch, Band 42, 90 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 166 g

Reihe: SpringerBriefs in Mathematical Physics

ISBN: 978-981-16-2997-6
Verlag: Springer Nature Singapore


The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases.
For a given function f(x), the Padé approximation/interpolation supplies the rational functions P(x), Q(x) as approximants such as f(x)~P(x)/Q(x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by P(x) and f(x)Q(x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.
Yamada / Nagao Padé Methods for Painlevé Equations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1Padé approximation and di erential equation.- 2Padé approximation for Pvi.- 3Padé approximation for q-Painlevé/Garnier equations.- 4Padé interpolation.- 5Padé interpolation on q-quadratic grid.- 6Multicomponent Generalizations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.