Buch, Englisch, 105 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 195 g
Buch, Englisch, 105 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 195 g
Reihe: SpringerBriefs in Computer Science
ISBN: 978-3-030-54761-5
Verlag: Springer International Publishing
This book takes a comprehensive study on turbo message passing algorithms for structured signal recovery, where the considered structured signals include 1) a sparse vector/matrix (which corresponds to the compressed sensing (CS) problem), 2) a low-rank matrix (which corresponds to the affine rank minimization (ARM) problem), 3) a mixture of a sparse matrix and a low-rank matrix (which corresponds to the robust principal component analysis (RPCA) problem). The book is divided into three parts. First, the authors introduce a turbo message passing algorithm termed denoising-based Turbo-CS (D-Turbo-CS). Second, the authors introduce a turbo message passing (TMP) algorithm for solving the ARM problem. Third, the authors introduce a TMP algorithm for solving the RPCA problem which aims to recover a low-rank matrix and a sparse matrix from their compressed mixture. With this book, we wish to spur new researches on applying message passing to various inference problems.
- Provides an in depth look into turbo message passing algorithms for structured signal recovery
- Includes efficient iterative algorithmic solutions for inference, optimization, and satisfaction problems through message passing
- Shows applications in areas such as wireless communications and computer vision
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Drahtlostechnologie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
Introduction.- Turbo Message Passing for Compressed Sensing.- Turbo Message Passing for Affine Rank Minimization.- Turbo Message Passing for Compressed Robust Principal Component Analysis.- Learned Turbo Message Passing Algorithms.- Future Research Directions.- Conclusion.