E-Book, Englisch, 371 Seiten
Xu / Islam / Pucci Advanced Linear Machines and Drive Systems
1. Auflage 2019
ISBN: 978-981-13-9616-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 371 Seiten
ISBN: 978-981-13-9616-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems.
The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;About the Editors;6
3;Acronyms;9
4;Symbols;14
5;List of Figures;20
6;List of Tables;32
7;1 Dynamic Modelling of LIMs Including End-Effects;34
7.1;Abstract;34
7.2;1 Definition of Space-Vectors;34
7.2.1;1.1 3?2 and 2?3 Transformations;35
7.2.2;1.2 Coordinate Transformation;35
7.3;2 Introduction About the Mathematical Models of LIMs;37
7.4;3 Space-Vector T-Circuit of the LIM Including the Dynamic End Effects;39
7.5;4 Space-Vector Model of the LIM Including End-Effects Expressed in State Form;42
7.5.1;4.1 Voltage and Current Flux Models of the LIM;43
7.5.2;4.2 State Space Space-Vector Model of the LIM;48
7.5.3;4.3 Mechanical Equation;51
7.6;5 Parameter Identification of LIMs;52
7.6.1;5.1 Description of the Identification Algorithm;53
7.6.2;5.2 Magnetic Characterization of the LIM;56
7.7;6 Validation of the LIM Dynamic Model Including the End-Effects;57
7.7.1;6.1 Experimental Set-up;57
7.7.2;6.2 Finite Element Analysis (FEA) Model of the LIM;58
7.7.3;6.3 FEA Validation;59
7.7.4;6.4 Experimental Validation;63
7.7.5;6.5 Magnetic Characterization of the LIM from Experimental Tests;65
7.8;7 Summary;66
7.9;References;67
8;2 Advanced Modelling and Performance Analysis of Permanent Magnet Linear Generators;70
8.1;Abstract;70
8.2;1 Introduction;71
8.2.1;1.1 Linear Machines;72
8.2.2;1.2 Direct-Drive Power Take-Off Systems;73
8.2.3;1.3 Operation of Permanent Magnet Linear Generator;74
8.2.4;1.4 Linear Generator Power Rating;76
8.3;2 Linear Generator Technologies;78
8.4;3 Mathematical Modelling of WEC;80
8.4.1;3.1 The Ocean Wave Characterization;80
8.4.2;3.2 The Mathematical Modelling of a PMLG;81
8.5;4 Simulation and Analysis;83
8.5.1;4.1 The Two-Sided RPMLG (2SRPMLG);84
8.5.2;4.2 The Four-Sided RPMLG (4SRPMLG);88
8.6;5 Results and Discussions;89
8.6.1;5.1 The Comparison of the Modelled Machine with an Existing 2SRPMLG;89
8.6.2;5.2 Two-Sided Vs. Four-Sided Topologies;92
8.6.3;5.3 Rectangular Vs Square Structure PMLG;98
8.7;6 Conclusion;101
8.8;References;101
9;3 Model Predictive Current Control for Linear Induction Machine;105
9.1;Abstract;105
9.2;1 Introduction;106
9.2.1;1.1 Traditional Control Method for LIM;106
9.2.2;1.2 Development of MPC;107
9.3;2 FCS-MPC for LIM;108
9.3.1;2.1 FCS-MPC Based One Voltage Vector;110
9.3.2;2.2 FCS-MPC Based Two Voltage Vectors;113
9.3.3;2.3 FCS-MPC Based Three Voltage Vectors;117
9.3.4;2.4 Deadlock in Search Process;119
9.4;3 Multistep Model Predictive Control for LIM;121
9.4.1;3.1 Constraint Problem in MMPC;123
9.5;4 Simulation and Experiments;127
9.5.1;4.1 Results of FCS-MPC;127
9.5.2;4.2 Results of MMPC;135
9.6;5 Summary;149
9.7;References;149
10;4 Sensorless Control Techniques of LIMs;151
10.1;Abstract;151
10.2;1 Introduction on Sensorless Control;151
10.2.1;1.1 Model Based Sensorless Control of RIMs;153
10.2.2;1.2 Anisotropies Based Sensorless Control;155
10.2.3;1.3 Sensorless Control of LIMs;158
10.3;2 Limits of Model-Based Sensorless Techniques;159
10.3.1;2.1 Open-Loop Integration;159
10.3.1.1;2.1.1 The Neural Adaptive Integrator (NAI);160
10.3.2;2.2 The Inverter Non-Linearity Compensation;161
10.3.3;2.3 Machine Parameter Mismatch;163
10.4;3 Speed Estimation by Least-Squares;163
10.4.1;3.1 The Least-Squares Approach;163
10.4.2;3.2 The TLS EXIN Neuron;165
10.5;4 The TLS EXIN MRAS Speed Observer;165
10.5.1;4.1 The NN Adaptive Model;167
10.6;5 The TLS EXIN FOLO;168
10.6.1;5.1 The FOLO;168
10.6.2;5.2 The Speed Adaptation Law;171
10.7;6 The Closed-Loop MRAS (CL-MRAS);172
10.7.1;6.1 LIM Mechanical Model;174
10.8;7 Experimental Results on Sensorless Control of LIMs;177
10.9;8 Summary;181
10.10;References;181
11;5 Speed Sensorless Control Strategy for LIM Based on Extended State Observer;186
11.1;Abstract;186
11.2;1 Introduction;186
11.3;2 Secondary Flux Estimation Based on ESO;189
11.3.1;2.1 Description of ESO;189
11.3.2;2.2 Secondary Flux Estimation;190
11.4;3 Analysis of Speed Adaptive Mechanism;192
11.4.1;3.1 Analysis and Design of Speed Adaptive Algorithm;192
11.4.2;3.2 Analysis and Design of Speed Adaptive Parameters;194
11.5;4 Improved Speed Observer and Robust Speed Control Based on ESO;196
11.5.1;4.1 Improved Speed and Load Resistance Observer;196
11.5.2;4.2 Feedforward Control with Load Resistance Compensation;197
11.6;5 Simulation Results;199
11.6.1;5.1 Tracking Performance of Step Input;200
11.6.2;5.2 Disturbance Rejection Property;204
11.7;6 Experimental Results;207
11.7.1;6.1 Tracking Performance of Step Input;208
11.7.2;6.2 Disturbance Rejection Property;212
11.8;7 Summary;214
11.9;References;215
12;6 Loss Minimization Control Scheme for LIM;218
12.1;Abstract;218
12.2;1 Introduction;218
12.2.1;1.1 Search Controller Based LMC;219
12.2.2;1.2 Loss Model Based LMC;220
12.2.3;1.3 LMC Schemes for LIM;220
12.3;2 Loss Model and LMC Scheme for LIM;221
12.3.1;2.1 Equivalent Circuit of LIM;221
12.3.2;2.2 Loss Model of LIM;223
12.3.3;2.3 LMC for LIM;226
12.4;3 Loss Model and LMC Scheme for LIM Drive System;229
12.4.1;3.1 Loss Model for LIM Drive System;229
12.4.2;3.2 LMC for LIM Drive System;233
12.4.3;3.3 Results;234
12.4.3.1;3.3.1 Simulations;234
12.4.3.2;3.3.2 Experiments;236
12.5;4 Normal Force Integrated LMC for LIM;243
12.5.1;4.1 Normal Force;243
12.5.2;4.2 Normal Force Integrated LMC for LIM;245
12.5.3;4.3 Results;247
12.5.3.1;4.3.1 Determination of Normal Force Weighting Factor;247
12.5.3.2;4.3.2 Steady-State Performance;249
12.6;5 Summary;255
12.7;References;255
13;7 Non-linear Control Techniques of LIMs;257
13.1;Abstract;257
13.2;1 Control Techniques of Rotating Induction Motors (RIM);257
13.3;2 Scalar Control (SC) of LIMs;259
13.4;3 Field Oriented Control (FOC) of LIMs;262
13.4.1;3.1 Principle of Field Oriented Control;263
13.4.2;3.2 Secondary Flux Oriented Control;265
13.4.3;3.3 Secondary Flux Acquisition;266
13.4.4;3.4 Secondary Flux Oriented Control with Impressed Voltages;270
13.5;4 Feedback Linearization Control (FLC);274
13.5.1;4.1 Linearization of Systems in Companion Form;275
13.5.2;4.2 State-Input Linearization;275
13.5.3;4.3 Input-Output Linearization;276
13.6;5 Input-Output Feedback Linearization of LIMs;277
13.6.1;5.1 Space-Vector Model and Field Oriented Control of the LIM;278
13.6.2;5.2 Definition of the Input Output Feedback Linearization Control Law;282
13.6.3;5.3 Controller Design;286
13.6.4;5.4 System Constraints;288
13.6.5;5.5 FLC Scheme;289
13.6.6;5.6 Experimental Results;291
13.7;6 FLC and Sensitivity Versus Parameters Variation;293
13.7.1;6.1 MRAS Based Primary Resistance Estimator;294
13.8;7 Input-Output Adaptive Feedback Linearizing Control of Linear Induction Motor Considering the End-Effects;296
13.8.1;7.1 Dynamic Model of the LIM;296
13.8.2;7.2 Definition of the Input-Output Adaptive Feedback Linearization Control Law;297
13.8.3;7.3 Experimental Results;303
13.9;8 Summary;307
13.10;References;308
14;8 Superconducting Linear Machines for Electrical Power Generation from the Oceanic Wave;311
14.1;Abstract;311
14.2;1 Introduction;312
14.3;2 Copper Conductor and Permanent Magnet Linear Machines;314
14.4;3 Superconducting Linear Machines;320
14.4.1;3.1 Construction;320
14.4.2;3.2 Winding Layout;324
14.4.3;3.3 Parameters Calculation;325
14.4.4;3.4 Equivalent Circuit;326
14.5;4 Simulation Results;326
14.6;5 Summary;328
14.7;References;328
15;9 The Grid Connection of Linear Machine-Based Wave Power Generators;333
15.1;Abstract;333
15.2;1 Introduction;334
15.3;2 The Wave Energy Conversion;337
15.3.1;2.1 The Wave Energy Converters;337
15.3.2;2.2 The Conversion from Mechanical to the Electrical Energy;340
15.3.2.1;2.2.1 The Linear Generators as Electrical PTOs;341
15.4;3 Configurations of the WEC Arrays in Wave Farms;346
15.4.1;3.1 The Spatial Layout Planning for a Wave Farm;347
15.4.1.1;3.1.1 A Single String Radial Cluster;349
15.4.1.2;3.1.2 Radial Clusters of WECs with Tie-Breakers;349
15.4.1.3;3.1.3 A Star Topology with Radial Strings of WEC;349
15.4.1.4;3.1.4 A Mesh Interconnection of WECs in a WF;350
15.4.1.5;3.1.5 An Intermediate Offshore Substation;350
15.5;4 An Aggregation Effect of a Wave Farm;351
15.6;5 The Smoothing Effect of a Wave Farm;352
15.7;6 The Impact of Wave Farm on Storage Requirement;352
15.8;7 The Transmission of WF’s Power to the Onshore Grid;353
15.8.1;7.1 The Transmission Configurations;354
15.9;8 The Flicker and Power Oscillations at PCC;355
15.10;9 The Energy Storage Requirement;358
15.11;10 The Power, Voltage, and Frequency Control for Grid Integration;359
15.12;11 The Power Quality Issues;360
15.13;12 The Commercial Development of WECs in Australia;362
15.13.1;12.1 Commercial Scale Projects;362
15.14;13 Summary;364
15.15;References;366




