Xiong / Lu | Metallic Nanostructures | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 304 Seiten

Xiong / Lu Metallic Nanostructures

From Controlled Synthesis to Applications
2015
ISBN: 978-3-319-11304-3
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

From Controlled Synthesis to Applications

E-Book, Englisch, 304 Seiten

ISBN: 978-3-319-11304-3
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.

Yujie Xiong received his B.S. in chemical physics in 2000 and Ph.D. in inorganic chemistry in 2004 (with Professor Yi Xie), both from the University of Science and Technology of China (USTC).  After four-year training with Professors Younan Xia and John A. Rogers, he joined the National Nanotechnology Infrastructure Network (NSF-NNIN) at Washington University in St. Louis as the Principal Scientist and Lab Manager.  Starting from 2011, he is a Professor of Chemistry at the USTC.  He has published 88 papers with over 8,000 citation (H-index 46).  His research interests include synthesis, fabrication and assembly of inorganic materials for energy and environmental applications.Xianmao Lu is an assistant professor in the Department of Chemical & Biomolecular Engineering at National University of Singapore (NUS). Before he joined NUS, he was a postdoctoral research fellow at University of Washington and Washington University. He received his PhD in Chemical Engineering from the University of Texas at Austin, where he started his research in nanomaterials. His current research interest is mainly on shape-selective growth of noble metal nanocrystals and understanding of their fundamental properties.

Xiong / Lu Metallic Nanostructures jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Contributors;8
4;Editors Biography;10
5;Chapter-1;11
5.1;Metallic Nanostructures: Fundamentals;11
5.1.1;1.1 Metallic Nanostructures: General Introduction and Historical Background;11
5.1.1.1;1.1.1 General Introduction;11
5.1.1.2;1.1.2 Classification of Metallic Nanostructures;12
5.1.1.3;1.1.3 Historical Background of Metallic Nanostructures;13
5.1.2;1.2 Fundamental Properties of Metallic Nanostructures;15
5.1.2.1;1.2.1 Optical Properties;15
5.1.2.2;1.2.2 Catalytic Properties;16
5.1.2.3;1.2.3 Magnetic Properties;17
5.1.3;1.3 General Methods for the Synthesis of Metallic Nanostructures;18
5.1.3.1;1.3.1 Gas- and Solid-Phase Methods;19
5.1.3.2;1.3.2 Wet Chemical (Liquid Phase) Methods;20
5.1.3.2.1;1.3.2.1 Chemical Reduction and Thermal Decomposition;21
5.1.3.2.2;1.3.2.2 Hydrothermal and Solvothermal Method;22
5.1.3.2.3;1.3.2.3 Microwave Method;22
5.1.3.2.4;1.3.2.4 Radiolytic and Photochemical Method;23
5.1.3.2.5;1.3.2.5 Electrochemical Method;24
5.1.3.2.6;1.3.2.6 Sonochemical Method;24
5.1.3.2.7;1.3.2.7 Reversed Micelle Method;25
5.1.3.2.8;1.3.2.8 Multiphase Process;25
5.1.3.2.9;1.3.2.9 Template-Based Syntheses;26
5.1.4;1.4 Characterizations of Metallic Nanostructures;28
5.1.4.1;1.4.1 Techniques for Morphological Analysis;28
5.1.4.1.1;1.4.1.1 Transmission Electron Microscope;28
5.1.4.1.2;1.4.1.2 Scanning Electron Microscope (SEM);30
5.1.4.1.3;1.4.1.3 Atomic Force Microscope (AFM);30
5.1.4.2;1.4.2 Techniques for Crystal Structural Analysis;32
5.1.4.2.1;1.4.2.1 X-Ray Diffraction (XRD);32
5.1.4.2.2;1.4.2.2 Selected Area Electron Diffraction (SAED);33
5.1.4.3;1.4.3 Techniques for Composition Analysis;34
5.1.4.3.1;1.4.3.1 X-ray Photoelectron Spectroscopy (XPS);34
5.1.4.3.2;1.4.3.2 Energy-Dispersive X-Ray Spectroscopy;35
5.1.4.3.3;1.4.3.3 Inductively Coupled Plasma Atomic Emission Spectroscopy/Mass Spectrometry;36
5.1.5;1.5 Representative Examples for Shape-Controlled Synthesis of Metallic Nanostructures;37
5.1.5.1;1.5.1 Seed-Mediated Growth Methods;37
5.1.5.2;1.5.2 The Polyol Process;39
5.1.5.3;1.5.3 N,N-Dimethylformamide-Mediated Syntheses;41
5.1.5.4;1.5.4 Oleylamine-Mediated Syntheses;43
5.1.5.5;1.5.5 Plasmon-Mediated Syntheses;45
5.1.5.6;1.5.6 Electrochemical Square-Wave-Potential Methods;47
5.1.6;References;49
6;Chapter-2;58
6.1;Controlled Synthesis: Nucleation and Growth in Solution;58
6.1.1;2.1 Motivation for Controlled Synthesis of Metallic Nanomaterials;58
6.1.2;2.2 Stabilization in Solution-Phase Synthesis;61
6.1.2.1;2.2.1 Electrostatic Stabilization;61
6.1.2.2;2.2.2 Steric (or Polymeric) Stabilization;63
6.1.3;2.3 Fundamentals of Nucleation and Growth;64
6.1.3.1;2.3.1 Homogeneous Nucleation;64
6.1.3.2;2.3.2 Growth;68
6.1.3.3;2.3.3 Growth by Heterogeneous Nucleation (or Seeded Growth);72
6.1.4;2.4 Manipulating Nucleation and Growth for Shape-Control;72
6.1.4.1;2.4.1 Growth Mechanisms;72
6.1.4.2;2.4.2 Controlled Synthesis of Silver Nanomaterials;76
6.1.5;2.5 Final Remarks;80
6.1.6;References;81
7;Chapter-3;84
7.1;Bimetallic Nanocrystals: Growth Models and Controlled Synthesis;84
7.1.1;3.1 Introduction;84
7.1.2;3.2 Influence Factors of Bimetallic Nanocrystal Structures;87
7.1.3;3.3 Characterizations of Bimetallic Nanocrystals;89
7.1.3.1;3.3.1 XRD Analysis;89
7.1.3.2;3.3.2 TEM Observations;91
7.1.3.3;3.3.3 Elemental Information Analyzed by HAADF-STEM and EDX;91
7.1.4;3.4 Properties of Bimetallic Nanocrystals with Different Structures;92
7.1.4.1;3.4.1 Optical Properties of Au@Ag Core-Shell and Alloy Nanocrystals;93
7.1.4.2;3.4.2 Catalytic Properties of Bimetallic Nanocrystals with Different structures;96
7.1.5;3.5 Synthetic Approaches of Bimetallic Nanocrystals;98
7.1.5.1;3.5.1 Thermal Decomposition;99
7.1.5.2;3.5.2 Coreduction;102
7.1.5.3;3.5.3 Galvanic Replacement Reaction;105
7.1.5.4;3.5.4 Seed-Mediated Growth;108
7.1.6;3.6 Summary;112
7.1.7;References;112
8;Chapter-4;115
8.1;Interactions of Metallic Nanocrystals with Small Molecules;115
8.1.1;4.1 Introduction;115
8.1.2;4.2 Molecule of O2;116
8.1.2.1;4.2.1 Au–O2 Interactions;117
8.1.2.1.1;4.2.1.1 Au Clusters;117
8.1.2.1.2;4.2.1.2 Au Nanocrystals;120
8.1.2.2;4.2.2 Pd–O2 Interactions;123
8.1.2.2.1;4.2.2.1 Surface Facet;123
8.1.2.2.2;4.2.2.2 Surface Charge State;124
8.1.2.3;4.2.3 Ag–O2 Interactions;125
8.1.2.4;4.2.4 Summary for Metal–Oxygen Interactions;126
8.1.3;4.3 Molecule of H2;127
8.1.3.1;4.3.1 Pd–H2 Interactions;127
8.1.3.2;4.3.2 Alloys with Isolated Pd Atoms;130
8.1.3.3;4.3.3 Applications;130
8.1.3.3.1;4.3.3.1 Catalytic Reactions;130
8.1.3.3.2;4.3.3.2 H2 Sensing;132
8.1.4;4.4 Conclusion and Outlook;136
8.1.5;4.5 Appendices;136
8.1.5.1;4.5.1 A. Synthetic Methods;136
8.1.5.2;4.5.2 B. ESR Measurement;137
8.1.6;References;137
9;Chapter-5;140
9.1;Plasmonic Nanostructures for Biomedical and Sensing Applications;140
9.1.1;5.1 Introduction;140
9.1.2;5.2 Optical Properties;141
9.1.2.1;5.2.1 Localized Surface Plasmon Resonance (LSPR);141
9.1.2.2;5.2.2 Absorption;143
9.1.2.3;5.2.3 Photoluminescence;145
9.1.2.4;5.2.4 Scattering;146
9.1.3;5.3 Surface Effects;147
9.1.3.1;5.3.1 Surface-Enhanced Raman Scattering (SERS);147
9.1.3.2;5.3.2 Surface-Enhanced Fluorescence (SEF);150
9.1.3.3;5.3.3 Nanometal Surface Energy Transfer (NSET);151
9.1.3.4;5.3.4 Surface Chemistry;153
9.1.4;5.4 Biomedical and Sensing Applications;154
9.1.4.1;5.4.1 Therapeutics;155
9.1.4.1.1;5.4.1.1 Photothermal Therapy;155
9.1.4.1.2;5.4.1.2 Chemotherapy;156
9.1.4.1.3;5.4.1.3 Gene Therapy;159
9.1.4.2;5.4.2 Biomedical Imaging;161
9.1.4.2.1;5.4.2.1 Photoacoustic Tomography (PAT);161
9.1.4.2.2;5.4.2.2 Photothermal Imaging;162
9.1.4.2.3;5.4.2.3 Darkfield Microscopy;163
9.1.4.2.4;5.4.2.4 Optical Coherence Tomography (OCT);164
9.1.4.2.5;5.4.2.5 Raman Imaging and Mapping;166
9.1.4.2.6;5.4.2.6 Multiphoton Luminescence;166
9.1.4.3;5.4.3 Sensing Applications;166
9.1.4.3.1;5.4.3.1 Agglomeration-Based Detection;168
9.1.4.3.2;5.4.3.2 LSPR-Based Detection;169
9.1.4.3.3;5.4.3.3 Raman-Based Sensing;170
9.1.4.3.4;5.4.3.4 Fluorescence-Based Sensing;172
9.1.5;5.5 Conclusion and Outlook;172
9.1.6;References;174
10;Chapter-6;181
10.1;Magnetic-Metallic Nanostructures for Biological Applications;181
10.1.1;6.1 Introduction;181
10.1.2;6.2 Chemical Synthesis of Magnetic-Metallic Nanostructures;182
10.1.2.1;6.2.1 Nanocrytals of Iron, Cobalt, and Nickel;182
10.1.2.1.1;6.2.1.1 Iron Nanocrystals;182
10.1.2.1.2;6.2.1.2 Nanocrystals of Cobalt and Nickel;187
10.1.2.2;6.2.2 Nanocrystals of Alloys of Iron, Cobalt, and Nickel;189
10.1.2.2.1;6.2.2.1 M–Pt (M = Fe, Co) Alloys Nanocrystals;189
10.1.2.2.2;6.2.2.2 M–Fe (M = Co, Ni) Alloys Nanocrystals;190
10.1.2.2.3;6.2.2.3 M–C (M = Fe, Co,Ni) Carbide Alloys Nanocrystals;192
10.1.2.2.4;6.2.2.4 Iron Carbides Nanosrystals;193
10.1.2.2.5;6.2.2.5 Cobalt Carbides Nanocrystals;195
10.1.2.2.6;6.2.2.6 Nickel Carbide Nanocrystals;195
10.1.3;6.3 Biological Applications of Magnetic-Metallic Nanocrystals;196
10.1.3.1;6.3.1 Magnetic-Metallic Nanocrystals for Magnetic Hyperthermia;196
10.1.3.2;6.3.2 Magnetic-Metallic Nanocrystals for Magnetic Resonance Imaging;200
10.1.3.3;6.3.3 Ion Releasing for Selectively Killing Cancer Cell;203
10.1.4;6.4 Conclusions and Perspectives;206
10.1.5;Reference;206
11;Chapter-7;210
11.1;Metallic Nanostructures for Electrocatalysis;210
11.1.1;7.1 Introduction;210
11.1.2;7.2 Electrochemical Reaction;211
11.1.2.1;7.2.1 Thermodynamics of Electrochemical Reaction;211
11.1.2.2;7.2.2 Kinetics of Electrochemical Reaction;214
11.1.3;7.3 Fundamentals for Metal Electrocatalysis;217
11.1.3.1;7.3.1 Mechanism of Metal Electrocatalysis;217
11.1.3.2;7.3.2 Kinetics of Metal Electrocatalysis;218
11.1.4;7.4 Fundamentals for Metal Electrocatalyst;219
11.1.4.1;7.4.1 Electronic Effect;219
11.1.4.2;7.4.2 Geometric Effect;221
11.1.4.3;7.4.3 Other Effects;222
11.1.4.3.1;7.4.3.1 Third-Body Effect;222
11.1.4.3.2;7.4.3.2 Bifunctional Effect;225
11.1.4.4;7.4.4 Practical Considerations in Metal Electrocatalyst Research;226
11.1.4.4.1;7.4.4.1 Chemical Stability of Metals;226
11.1.4.4.2;7.4.4.2 Metal Surface Restructuring and Segregation;227
11.1.5;7.5 Current Development of Metallic Nanostructures for Electrocatalysis;228
11.1.5.1;7.5.1 Oxygen Electrochemistry;228
11.1.5.1.1;7.5.1.1 Oxygen Reduction Reaction;228
11.1.5.1.2;7.5.1.2 Oxygen Evolution Reaction;232
11.1.5.2;7.5.2 Hydrogen Electrochemistry;233
11.1.5.2.1;7.5.2.1 Hydrogen Evolution Reaction;233
11.1.5.2.2;7.5.2.2 Hydrogen Oxidation Reaction (HOR);234
11.1.5.3;7.5.3 Electrochemistry of Carbon-Containing Compounds;234
11.1.5.3.1;7.5.3.1 Methanol Oxidation Reaction;234
11.1.5.3.2;7.5.3.2 Formic Acid Oxidation Reaction;235
11.1.5.3.3;7.5.3.3 Ethanol Oxidation Reaction;236
11.1.5.4;7.5.4 Electrochemistry of Nitrogen-Containing Compounds;238
11.1.5.4.1;7.5.4.1 Ammonia Oxidation Reaction;238
11.1.5.4.2;7.5.4.2 Hydrazine Oxidation Reaction;239
11.1.6;References;241
12;Chapter-8;247
12.1;Metallic Nanostructures for Catalytic Applications;247
12.1.1;8.1 Introduction;247
12.1.2;8.2 Traditional Small Metallic Nanostructure Catalysis;250
12.1.2.1;8.2.1 Size and Facet-dependent Catalysis;252
12.1.2.2;8.2.2 Support Effect;255
12.1.3;8.3 Catalytic Reactions Using Traditional Metallic Nanostructure Catalysts;255
12.1.3.1;8.3.1 Carbon Monoxide Oxidation;255
12.1.3.2;8.3.2 Ethylene Epoxidation;258
12.1.4;8.4 Large Metallic Nanostructure Catalysis;260
12.1.4.1;8.4.1 Photocatalysis Model;260
12.1.4.2;8.4.2 Metallic Nanoparticles as an Electron Sink;261
12.1.4.3;8.4.3 Charge Transfer to the Support;263
12.1.4.4;8.4.4 Direct Charge Transfer to Adsorbed Species;265
12.1.4.5;8.4.5 Photothermal Effect on Catalysis;268
12.1.5;8.5 Conclusion;270
12.1.6;References;271
13;Chapter-9;274
13.1;Metallic Nanostructures for Electronics and Optoelectronics;274
13.1.1;9.1 Introduction;274
13.1.2;9.2 Transparent and Flexible Conductive Electrodes;275
13.1.2.1;9.2.1 Conventional Conductors;275
13.1.2.2;9.2.2 Silver Nanowires (Ag NWs);276
13.1.2.2.1;9.2.2.1 Typical Synthesis and Electrode Fabrication;276
13.1.2.2.2;9.2.2.2 Performance of Typical Ag NW Mesh Electrodes;277
13.1.2.2.3;9.2.2.3 Methods for Reducing Sheet Resistance;279
13.1.2.2.4;9.2.2.4 Methods for Enhancing Optical Transmittance;281
13.1.2.2.5;9.2.2.5 Methods for Enhancing Stability;284
13.1.2.2.6;9.2.2.6 Methods for Improving Electrode Smoothness;288
13.1.2.2.7;9.2.2.7 Summary for Ag NW Mesh Electrodes;289
13.1.2.3;9.2.3 Cu nanowires (Cu NWs);289
13.1.2.3.1;9.2.3.1 Typical Synthesis of Cu NWs;290
13.1.2.3.2;9.2.3.2 Fabrication of Cu NW Electrodes;290
13.1.2.3.3;9.2.3.3 Methods for Improving Cu NW Electrode Performance;290
13.1.2.3.4;9.2.3.4 Summary for Cu NW Electrodes;295
13.1.3;9.3 Plasmonic Waveguiding;296
13.1.3.1;9.3.1 Light Coupling;296
13.1.3.2;9.3.2 Plasmonic Propagation;298
13.1.3.3;9.3.3 Functional Components in Nanophotonic Circuits;299
13.1.3.4;9.3.4 Summary for Ag NW Plasmonic Waveguides;302
13.1.4;9.4 Conclusion and Outlook;302
13.1.5;9.5 Protocols;303
13.1.5.1;9.5.1 Typical Synthesis of Ag NWs;303
13.1.5.2;9.5.2 Typical Synthesis of Cu NWs;303
13.1.6;References;303



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.