Xiong

Big Data in Omics and Imaging, Two Volume Set

Buch, Englisch, 1404 Seiten

Reihe: Chapman & Hall/CRC Mathematical and Computational Biology

ISBN: 978-0-367-00218-3
Verlag: Taylor & Francis Ltd


FEATURES

Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data

Provides tools for high dimensional data reduction

Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection

Provides real-world examples and case studies

Will have an accompanying website with R code

Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently.

Introduce causal inference theory to genomic, epigenomic and imaging data analysis

Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies.

Bridge the gap between the traditional association analysis and modern causation analysis

Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks

Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease

Develop causal machine learning methods integrating causal inference and machine learning

Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks

The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases– from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.
Xiong Big Data in Omics and Imaging, Two Volume Set jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


K25794:

Mathematical Foundation.

Linkage Disequilibrium.

Association Studies for Qualitative Traits.

Association Studies for Quantitative Traits.

Multiple Phenotype Association Studies.

K345128

Preface

Author

1. Genotype–Phenotype Network Analysis

2. Causal Analysis and Network Biology

3. Wearable Computing and Genetic Analysis of Function-Valued Traits

4. RNA-Seq Data Analysis

5. Methylation Data Analysis

6. Imaging and Genomics

7. From Association Analysis to Integrated Causal Inference

References

Index


Momiao Xiong is a professor of Biostatistics at the University of Texas Health Science Center in Houston where he has worked since 1997. He received his PhD in 1993 from the University of Georgia.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.