Buch, Englisch, 394 Seiten, Format (B × H): 217 mm x 280 mm, Gewicht: 1193 g
Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition
Buch, Englisch, 394 Seiten, Format (B × H): 217 mm x 280 mm, Gewicht: 1193 g
Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition
ISBN: 978-0-367-85940-4
Verlag: Taylor & Francis Ltd
Key Features:
- Cover three types of neural networks, formulate deep learning as an optimal control problem and use Pontryagin’s Maximum Principle for network training.
- Deep learning for nonlinear mediation and instrumental variable causal analysis.
- Construction of causal networks is formulated as a continuous optimization problem.
- Transformer and attention are used to encode-decode graphics. RL is used to infer large causal networks.
- Use VAE, GAN, neural differential equations, recurrent neural network (RNN) and RL to estimate counterfactual outcomes.
- AI-based methods for estimation of individualized treatment effect in the presence of network interference.
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Stochastik
Weitere Infos & Material
1. Deep Neural Networks. 2. Deep Wide Neural Networks. 3. Dynamics of Output of Neural Networks. 4. Deep Generative Models. 5. Representation Learning. 5. Graph Representation Learning. 6. Deep Learning for Causal Inference. 7. Deep Learning for Counterfactual Inference and Treatment Estimation. 8. Reinforcement Learning, Meta-Learning for Causal Inference and Quantum Causal Analysis.