Xin / Ma / She | Computational Intelligence and Industrial Applications | E-Book | sack.de
E-Book

E-Book, Englisch, 337 Seiten

Reihe: Communications in Computer and Information Science

Xin / Ma / She Computational Intelligence and Industrial Applications

11th International Symposium, ISCIIA 2024, Beijing, China, November 1–5, 2024, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-981-964756-9
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

11th International Symposium, ISCIIA 2024, Beijing, China, November 1–5, 2024, Proceedings, Part II

E-Book, Englisch, 337 Seiten

Reihe: Communications in Computer and Information Science

ISBN: 978-981-964756-9
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-volume set CCIS 2465-2466, constitutes of the proceedings of 11th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2024, held in Beijing, China, during November 1–5, 2024.

The 55 full papers and 5 short papers included in this volume were carefully reviewed and selected from 135 submissions. The topics cover the following fields connected to computational intelligence and intelligent informatics: intelligent information processing, pattern recognition and computer vision, intelligent optimization and decision-making, advanced control, multi-agent systems, robotics and various applications of computational intelligence methods such as neural networks, fuzzy reasoning, evolutionary computing, machine learning and deep learning.

Xin / Ma / She Computational Intelligence and Industrial Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Analysis of Machine Learning Models for Stroke Prediction with Emphasis on Hyperparameter Tuning Techniques.

.- Feasibility study of classification for music preference level based on galvanic skin response (GSR) and photoplethysmogram (PPG) sensor data with machine learning method.

.- Development of a Measurement System based on Level of Interest for Providing Human-friendly Services.

.- LCFP-RRT : A Robot Exploration Algorithm Based on Local Constrained Sampling and Frontier Prioritization Classification.

.- Research on the Optimization of Pathological Section Slide-stainer Machine Layout Model.

.- Evaluation of Session Segmentation Methods Using Behavior and Text Embeddings.

.- Multi-Agent Reinforcement Learning for Sparse Reward Tasks using Incremental Goal Enhanced Method.

.- Research on Sensor Fault Diagnosis Method Based on KPCA-AE Algorithm.

.- Microwave Imaging Fusion for Brain Tumours Detection.

.- Development an Active-Caster with Differential Mechanism Utilizing a Twisted-Timing-Belt.

.- Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN.

.- Speaker Age Recognition based on Convolution and Transformer Fusion Framework.

.- TS-VAT: Efficient Deployment of Teacher-Student Framework in Visual Active Tracking.

.- A Preliminary Study of Indicator-based Genetic Programming for Multi-objective Dynamic Flexible Scheduling.

.- Cooperative Agentic Framework for Enhanced Function Calling.

.- Explainability of CNN Classification Models Using CycleGAN and Their Application to Medical Imaging.

.- Designing Message Exchange Limits in Distributed Ship Collision Avoidance Systems.

.- Mixture of Experts based Scenario Prediction for Motion Forecasting.

.- Vulnerability Verification in Robot Control Using Decision Transformer.

.- Robustness Verification of Decision Transformer with Varying Noise-Augmented Data Ratios in Atari Games.

.- Solving the Stochastic Resource Allocation Problem through an Adaptive Variable Neighborhood Search Algorithm.

.- Research on rice grain detection method based on MATLAB image processing.

.- Two Time Scale Partial Unknown Dynamics System Tracking Control Based On Off-policy Inverse Reinforcement Learning.

.- MFTCP: Multiple Factors based Test Case Prioritization.

.- Efficient and Accurate Point Cloud Registration with Sparsepoint Transformer for Landslide Detection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.