Theory and Python Implementation
Buch, Englisch, 559 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1033 g
ISBN: 978-981-19-4932-6
Verlag: Springer Nature Singapore
This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter 1. Introduction of Reinforcement Learning (RL).- Chapter 2. MDP: Markov Decision Process.- Chapter 3. Model-based Numerical Iteration.- Chapter 4. MC: Monte Carlo Learning.- Chapter 5. TD: Temporal Difference Learning.- Chapter 6. Function Approximation.- Chapter 7. PG: Policy Gradient.- Chapter 8. AC: Actor–Critic.- Chapter 9. DPG: Deterministic Policy Gradient.- Chapter 10. Maximum-Entropy RL.- Chapter 11. Policy-based Gradient-Free Algorithms.- Chapter 12. Distributional RL.- Chapter 13. Minimize Regret.- Chapter 14. Tree Search.- Chapter 15. More Agent–Environment Interfaces.- Chapter 16. Learn from Feedback and Imitation Learning.