Xiao | Recycled Aggregate Concrete Structures | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 670 Seiten

Reihe: Springer Tracts in Civil Engineering

Xiao Recycled Aggregate Concrete Structures


1. Auflage 2018
ISBN: 978-3-662-53987-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 670 Seiten

Reihe: Springer Tracts in Civil Engineering

ISBN: 978-3-662-53987-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book describes how, given the global challenge of a shortage of natural resources in the 21st century, the recycling of waste concrete is one of the most important means of implementing sustainable construction development strategies.Firstly, the book presents key findings on the micro- and meso-structure of recycled aggregate concrete (RAC), while the second part focuses on the mechanical properties of RAC: the strength, elastic modulus, Poisson's ratio, stress-strain curve, etc. The third part of the book explores research on the durability of RAC: carbonization, chloride penetration, shrinkage and creep. It then presents key information on the mechanical behavior and seismic performance of RAC elements and structures: beams, columns, slabs, beam-column joints, and frames. Lastly, the book puts forward design guidelines for recycled aggregate concrete structures.
Taken as a whole, the research results - based on a series of investigations the author has conducted on the mechanical properties, durability and structural performance of recycled aggregate concrete (RAC) over the past 10 years - demonstrate that, with proper design and construction, it is safe and feasible to utilize RAC structures in civil engineering applications. The book will greatly benefit researchers, postgraduates, and engineers in civil engineering with an interest in this field.

Xiao Recycled Aggregate Concrete Structures jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Acknowledgements;9
3;Contents;11
4;About the Author;21
5;List of Figures;22
6;List of Tables;38
7;1 Introduction;46
7.1;Abstract;46
7.2;1.1 Sustainable Development of Building Industry;46
7.2.1;1.1.1 The Consumption of Energy and Resources in Building Industry;46
7.2.2;1.1.2 New Strategies for Sustainable Development in Building Industry;47
7.2.3;1.1.3 The Significant Role of Concrete Industry in Implementing “Sustainable Development” Strategies;49
7.3;1.2 Concrete Recycling and Reusing;50
7.3.1;1.2.1 The Life Cycle and Extension of Concrete Structures;50
7.3.2;1.2.2 Waste Concrete;51
7.3.3;1.2.3 Recycled Aggregate Concrete;52
7.4;1.3 An Overview on the Worldwide and China’s Waste Concrete Recycling Techniques;53
7.4.1;1.3.1 Worldwide Waste Concrete Recycling Techniques;53
7.4.2;1.3.2 The Development of RAC Technology in China;55
7.5;1.4 Problems to Research RAC and Forecast of Developing Trend;56
7.5.1;1.4.1 Primary Problems;56
7.5.2;1.4.2 Forecast of Developing Trend;56
7.6;1.5 Scientific Subject Chain in Civil Engineering;57
7.7;1.6 Book’s Outline;57
7.8;References;58
8;2 Reclaim of Waste Concrete;60
8.1;Abstract;60
8.2;2.1 Introduction;60
8.3;2.2 Source of Waste Concrete;60
8.3.1;2.2.1 General Sources—Pavement, Buildings, Bridges and Other Types of Constructions;60
8.3.2;2.2.2 Disasters;62
8.4;2.3 Quantity of Waste Concrete;64
8.4.1;2.3.1 Quantity in China;64
8.4.1.1;2.3.1.1 Damage of Buildings for Different Types of Structures in Disaster Area;64
8.4.1.2;2.3.1.2 Characteristics of Building Waste for Different Types of Structures;65
8.4.1.3;2.3.1.3 Statistics of Building Waste Generated by Different Types of Structures;66
8.4.2;2.3.2 Future Tendency Forecast;68
8.4.2.1;2.3.2.1 Estimation Formula;68
8.4.2.2;2.3.2.2 Relationship Between Building Waste and Seismic Intensity;68
8.5;2.4 Classification of Waste Concrete;70
8.5.1;2.4.1 Standard;70
8.5.2;2.4.2 Classification;71
8.5.2.1;2.4.2.1 Building Waste Classification by Chronological Order/Damage Status of Buildings;71
8.5.2.2;2.4.2.2 Building Waste Classified by Materials;71
8.5.2.3;2.4.2.3 Building Waste Classified by Structure Types;72
8.6;2.5 Reduce Principle and Methods;73
8.6.1;2.5.1 Reasonable Plan;73
8.6.2;2.5.2 Elaborate Design;74
8.6.3;2.5.3 Ecological Materials;75
8.6.4;2.5.4 Green Construction;75
8.7;2.6 Reuse Materials and Elements;76
8.7.1;2.6.1 Recycled Blocks;77
8.7.2;2.6.2 Reuse Elements;77
8.8;2.7 Recycling;78
8.8.1;2.7.1 Low-Grade Recycling;79
8.8.2;2.7.2 High-Grade Recycling;80
8.9;2.8 Concluding Remarks;80
8.10;References;81
9;3 Recycled Aggregates;83
9.1;Abstract;83
9.2;3.1 Crushing and Sieving Techniques;83
9.2.1;3.1.1 Worldwide Waste Concrete Crushing Techniques;83
9.2.2;3.1.2 China’s Waste Concrete Crushing Techniques;85
9.2.3;3.1.3 Crushing Equipment;88
9.3;3.2 Recycled Fine Aggregates;90
9.3.1;3.2.1 Properties;90
9.3.2;3.2.2 Classification;90
9.3.3;3.2.3 Testing Method;92
9.4;3.3 Recycled Coarse Aggregates;92
9.4.1;3.3.1 Single Source of RCA;92
9.4.1.1;3.3.1.1 Test Summary;92
9.4.1.2;3.3.1.2 Gradation;93
9.4.1.3;3.3.1.3 The Particle Shape and Surface Structure;93
9.4.1.4;3.3.1.4 Density;94
9.4.1.5;3.3.1.5 Water Absorption;94
9.4.1.6;3.3.1.6 Content of Attached Mortar;94
9.4.1.7;3.3.1.7 Porosity;95
9.4.1.8;3.3.1.8 Crush Value;95
9.4.1.9;3.3.1.9 Soundness;95
9.4.1.10;3.3.1.10 Content of Elongated and Flaky Particles;96
9.4.1.11;3.3.1.11 Content of Clay;96
9.4.2;3.3.2 Multi Source of RCA;97
9.4.2.1;3.3.2.1 Test Summary;97
9.4.2.2;3.3.2.2 Apparent Density;97
9.4.2.3;3.3.2.3 Water Absorption;97
9.4.2.4;3.3.2.4 Content of Mortar;98
9.4.2.5;3.3.2.5 Analysis and Discussion;98
9.5;3.4 Method of Classifying and Testing for RCA;99
9.5.1;3.4.1 Study on RCA Classification;99
9.5.2;3.4.2 Testing Methods;102
9.6;3.5 Pre-treating and Enhancement;103
9.6.1;3.5.1 Adjusting Mix Proportion;103
9.6.2;3.5.2 Chemical Method;104
9.6.3;3.5.3 Physical Method;104
9.7;3.6 Concluding Remarks;105
9.8;References;105
10;4 Recycled Aggregate Concrete;108
10.1;Abstract;108
10.2;4.1 Requirement for Mix Proportion Design;108
10.2.1;4.1.1 General Points;108
10.2.2;4.1.2 Cementitious Material;109
10.2.3;4.1.3 Aggregates;110
10.2.4;4.1.4 Admixtures;110
10.2.5;4.1.5 Chemical Admixtures;110
10.3;4.2 Compressive Strength-Based Mix Proportion Design Method;111
10.3.1;4.2.1 Review Points;111
10.3.2;4.2.2 Calculation Steps;111
10.4;4.3 Durability-Based Mix Proportion Design Method;116
10.4.1;4.3.1 Review;116
10.4.2;4.3.2 Design Program;117
10.5;4.4 Other Mix Proportion Design Methods;119
10.5.1;4.4.1 Volumetric Design Method;119
10.5.2;4.4.2 Application of Computers in the Design of the Mix Proportion;120
10.5.3;4.4.3 Application of Artificial Neural Network;120
10.5.4;4.4.4 Application of Artificial Neural Network Expert System;120
10.6;4.5 Microstructure of RAC;121
10.6.1;4.5.1 Micro-Composition of RAC;121
10.6.2;4.5.2 SEM Testing;122
10.6.3;4.5.3 Pore Structure Testing;123
10.7;4.6 ITZ Nanoindention;125
10.7.1;4.6.1 Testing Preparation;125
10.7.1.1;4.6.1.1 Materials;125
10.7.1.2;4.6.1.2 Sample Preparation;126
10.7.1.3;4.6.1.3 Nanoindentation Details;128
10.7.2;4.6.2 Grid Nanoindentation Results;130
10.7.3;4.6.3 Grid Nanoindentation on Paste Matrix;133
10.7.4;4.6.4 Imaging Nanoindentation Result;134
10.8;4.7 Damage of RAC;135
10.8.1;4.7.1 Initial Damage of RAC;136
10.8.2;4.7.2 Damage Evolution of RAC;136
10.9;4.8 Improvements of RAC;138
10.9.1;4.8.1 ITZ Improvements—Physical and Chemical;138
10.9.2;4.8.2 Two-Stage Mixing Approach;139
10.10;4.9 Concluding Remarks;140
10.11;References;140
11;5 Modeled Recycled Aggregate Concrete;142
11.1;Abstract;142
11.2;5.1 Concept and Realization;142
11.2.1;5.1.1 Philosophy;142
11.2.2;5.1.2 Method;143
11.3;5.2 Cracking Propagation of MRAC;146
11.3.1;5.2.1 Digital Image Correlation Technique;146
11.3.2;5.2.2 Loading System;146
11.3.3;5.2.3 Crack Pattern and Failure Mode;147
11.4;5.3 Stress Distribution in MRAC;150
11.4.1;5.3.1 Analytical Procedures;150
11.4.1.1;5.3.1.1 Finite Element Model (FEM) Analysis;150
11.4.1.2;5.3.1.2 Mechanical Parameters;151
11.4.2;5.3.2 Simulation and Test Verification;152
11.4.2.1;5.3.2.1 Stress Distribution;153
11.4.3;5.3.3 Effects of Relative Properties of ITZs;155
11.5;5.4 Modification of Modeled Recycled Aggregate Concrete by Carbonation;158
11.5.1;5.4.1 Experimental Program;158
11.5.1.1;5.4.1.1 Specimen Design;158
11.5.1.2;5.4.1.2 Materials and Mix Proportions;158
11.5.1.3;5.4.1.3 Testing Procedure;159
11.5.2;5.4.2 Experimental Results and Discussions;161
11.5.2.1;5.4.2.1 Failure Patterns;161
11.5.2.2;5.4.2.2 The Effect of Carbonation Modification;163
11.5.2.3;5.4.2.3 The Effect of NHM’s w/c Ratio;164
11.5.2.4;5.4.2.4 The Effect of OHM’s w/c Ratio;166
11.5.3;5.4.3 Summary;167
11.6;5.5 Chloride Diffusion in Modeled Recycled Aggregate Concrete;168
11.6.1;5.5.1 Specimen Design;168
11.6.2;5.5.2 Simulation Procedure;169
11.6.3;5.5.3 Parametric Study;170
11.6.4;5.5.4 Results and Discussions;172
11.6.4.1;5.5.4.1 Position Effect;172
11.6.4.2;5.5.4.2 RA Volume Fraction Effect;174
11.6.4.3;5.5.4.3 RA Shape Effect on Diffusivity;176
11.6.4.4;5.5.4.4 Boundary Effect;180
11.6.4.5;5.5.4.5 Adhesive Rate of Old Adhered Mortar Effect;181
11.6.4.6;5.5.4.6 ITZ Effect;183
11.7;5.6 Concluding Remarks;184
11.8;References;185
12;6 Strength of Recycled Aggregate Concrete;186
12.1;Abstract;186
12.2;6.1 Compressive Strength;186
12.2.1;6.1.1 The Characteristics of Cube Compressive Strength;187
12.2.2;6.1.2 Factors Influencing the Cube Compressive Strength;188
12.3;6.2 Distribution of the Compressive Strength;189
12.3.1;6.2.1 The Histogram of the Compressive Strength;189
12.3.2;6.2.2 Examining the Distribution Characteristics of the Compressive Strength;191
12.3.3;6.2.3 Simulation of the Compressive Strength Distribution;191
12.3.4;6.2.4 Strength Index Value;193
12.4;6.3 Tensile Strength and Flexural Strength;194
12.4.1;6.3.1 Tensile Strength;194
12.4.2;6.3.2 Flexural Properties;195
12.5;6.4 The Relationship of Mechanical Indexes;196
12.5.1;6.4.1 Cube Compressive Strength and Prism Compressive Strength;196
12.5.2;6.4.2 Splitting Tensile Strength and Cube Compressive Strength;197
12.5.3;6.4.3 Flexural Strength and Cube Compressive Strength;198
12.6;6.5 Effects of Elevated Temperatures on Strength;199
12.6.1;6.5.1 Residual Compressive Strength;199
12.6.2;6.5.2 Residual Flexure Strength;203
12.6.3;6.5.3 Comparisons Between Residual Compressive and Flexural Strength of RAC;205
12.7;6.6 Concluding Remarks;206
12.8;References;207
13;7 Constitutive Relationship of Recycled Aggregate Concrete;209
13.1;Abstract;209
13.2;7.1 Stress–Strain Relationship Under Axial Compressive Loading;209
13.2.1;7.1.1 Test;209
13.2.1.1;7.1.1.1 Materials;209
13.2.1.2;7.1.1.2 Mix Proportions;210
13.2.1.3;7.1.1.3 Preparation of Specimens;210
13.2.1.4;7.1.1.4 Test Setup and Test Method;211
13.2.2;7.1.2 Curves of the Stress–Strain Relationship of RAC;211
13.2.2.1;7.1.2.1 Characteristics of the Overall Curves of the Stress–Strain Relationship of RAC;211
13.2.2.2;7.1.2.2 The Pattern and Equations of the Stress–Strain Curve;212
13.2.3;7.1.3 Peak Stress;214
13.2.4;7.1.4 Peak Strain;214
13.2.5;7.1.5 Ultimate Strain;215
13.2.6;7.1.6 Elastic Modulus;215
13.2.7;7.1.7 Poisson’s Ratio;216
13.3;7.2 Variation Evaluation of Stress–Strain Relationship for RAC;216
13.3.1;7.2.1 Experimental Programs;216
13.3.2;7.2.2 Experimental Results;219
13.3.3;7.2.3 Summary;220
13.4;7.3 Stress–Strain Relationship Under Axial Tensile Loading;223
13.4.1;7.3.1 Experimental Descriptions;223
13.4.1.1;7.3.1.1 Design of Experiments;223
13.4.1.2;7.3.1.2 Materials;224
13.4.1.3;7.3.1.3 Specimens Casting and Curing;225
13.4.1.4;7.3.1.4 Test Loading;225
13.4.2;7.3.2 Results and Discussion;226
13.4.2.1;7.3.2.1 Quantity and Distribution of Each Phase;226
13.4.2.2;7.3.2.2 Physical Properties;227
13.4.2.3;7.3.2.3 Mechanical Properties of Parent Concrete and Old Mortar;229
13.4.2.4;7.3.2.4 Mechanical Properties of Recycled Concrete and New Mortar;230
13.4.2.5;7.3.2.5 Tensile Strength of ITZ;232
13.4.3;7.3.3 Simulation with Lattice Model;233
13.4.3.1;7.3.3.1 Conventional Lattice Model Method;233
13.4.3.2;7.3.3.2 A Modified Lattice Model;233
13.4.3.3;7.3.3.3 A Modified Random Aggregate Model for Recycled Aggregate Concrete;234
13.4.3.4;7.3.3.4 Simulation Results and Analysis;236
13.5;7.4 Stress–Strain Relationship Under Confinements;238
13.5.1;7.4.1 Test;238
13.5.1.1;7.4.1.1 Materials;238
13.5.1.2;7.4.1.2 Mixing and Specimen Details;239
13.5.1.3;7.4.1.3 Test Setup and Test Method;243
13.5.1.4;7.4.1.4 Loading Program;244
13.5.1.5;7.4.1.5 Test Phenomenon;244
13.5.2;7.4.2 Analysis;245
13.5.2.1;7.4.2.1 The Effect of the RCA Replacement Percentage on the Peak Load;245
13.5.2.2;7.4.2.2 The Effect of the RCA Replacement Percentage on the Axial Deformation;247
13.5.2.3;7.4.2.3 The Effect of the RCA Replacement Percentage on the Lateral Deformation Coefficient;250
13.5.3;7.4.3 Theoretical Analysis;250
13.5.4;7.4.4 Stress–Strain Relation of RCFS;252
13.5.5;7.4.5 Stress–Strain Relation of RCFF;255
13.6;7.5 Shear Stress–Slip Relationship Under Shear Loading;257
13.6.1;7.5.1 Test;257
13.6.1.1;7.5.1.1 Material;257
13.6.1.2;7.5.1.2 Specimen Design;258
13.6.1.3;7.5.1.3 Fabrication and Curing of Specimens;258
13.6.1.4;7.5.1.4 Testing Facility;260
13.6.1.5;7.5.1.5 Instrumentation;260
13.6.1.6;7.5.1.6 Loading Scheme;262
13.6.1.7;7.5.1.7 Failure Modes;263
13.6.1.8;7.5.1.8 Main Test Results;263
13.6.1.9;7.5.1.9 Shear Stress–Shear Displacement Curves;265
13.6.1.10;7.5.1.10 Shear Slip–Crack Separation Curves;266
13.6.2;7.5.2 Analysis of Test Results;266
13.6.2.1;7.5.2.1 Effects of the Lateral Constraint Stiffness;266
13.6.2.2;7.5.2.2 Effects of Concrete Strength;266
13.6.2.3;7.5.2.3 Effects of RCA Replacement Percentage with Different w/c Ratio;269
13.6.2.4;7.5.2.4 Effects of RCA Replacement Percentage with Same w/c Ratio;270
13.6.2.5;7.5.2.5 Prediction of the Shear Transfer Strength;271
13.7;7.6 Compressive Behavior Under Impact Loading;274
13.7.1;7.6.1 Experimental Program;274
13.7.1.1;7.6.1.1 Materials;274
13.7.1.2;7.6.1.2 Specimens;276
13.7.1.3;7.6.1.3 Quasi-Static Tests;276
13.7.1.4;7.6.1.4 Split Hopkinson Pressure Bar (SHPB) Tests;276
13.7.2;7.6.2 Test Results;278
13.7.2.1;7.6.2.1 Quasi-Static Test Results;278
13.7.2.2;7.6.2.2 SHPB Test Results;279
13.7.3;7.6.3 Test Analysis and Discussion;281
13.7.3.1;7.6.3.1 Compressive Strength and Dynamic Increase Factor;281
13.7.3.2;7.6.3.2 Initial Elastic Modulus;286
13.7.3.3;7.6.3.3 Peak Strain;287
13.7.3.4;7.6.3.4 Moisture Effect;287
13.8;7.7 Concluding Remarks;288
13.9;References;290
14;8 Long-Term Property of Recycled Aggregate Concrete;292
14.1;Abstract;292
14.2;8.1 Shrinkage and Creep Characteristics;292
14.2.1;8.1.1 Experimental Programme;292
14.2.1.1;8.1.1.1 Materials;292
14.2.1.2;8.1.1.2 Mix Proportions;293
14.2.1.3;8.1.1.3 Preparation of Specimens;294
14.2.1.4;8.1.1.4 Testing Equipment;294
14.2.2;8.1.2 Experimental Results;295
14.2.2.1;8.1.2.1 Mechanical Properties;295
14.2.2.2;8.1.2.2 Shrinkage;296
14.2.2.3;8.1.2.3 Creep;298
14.3;8.2 Carbonation Resistance Performance;299
14.3.1;8.2.1 Existing Prediction Models of Carbonation Depth;299
14.3.1.1;8.2.1.1 Fib Carbonation Model;299
14.3.1.2;8.2.1.2 Chinese Code’s Model;301
14.3.1.3;8.2.1.3 Zhang and Jiang’s Model;301
14.3.2;8.2.2 Carbonation Test of RAC;302
14.3.2.1;8.2.2.1 Test Design;302
14.3.2.2;8.2.2.2 Test Procedure;303
14.3.2.3;8.2.2.3 Test Results;304
14.3.2.4;8.2.2.4 Results Analysis;304
14.3.2.5;8.2.2.5 Xiao and Lei’s Model;310
14.4;8.3 Chloride Diffusion Resistance Performance;311
14.4.1;8.3.1 Rapid Chloride Test (RCT);311
14.4.1.1;8.3.1.1 RCT Testing Procedure;311
14.4.1.2;8.3.1.2 Results of the Chloride Concentration;312
14.4.1.3;8.3.1.3 Verification and Prediction of the Chloride Diffusion in RAC;320
14.4.2;8.3.2 Rapid Chloride Migration (RCM) Test;321
14.4.2.1;8.3.2.1 Experimental Program;321
14.4.2.2;8.3.2.2 Test Results and Discussions;324
14.5;8.4 Fatigue Behavior;327
14.5.1;8.4.1 Fatigue Testing;327
14.5.2;8.4.2 Compressive Fatigue Test Results and Analysis;328
14.5.2.1;8.4.2.1 Testing Phenomena;328
14.5.2.2;8.4.2.2 S–N Curves;329
14.5.2.3;8.4.2.3 Residual Strain Variation;329
14.5.2.4;8.4.2.4 Fatigue Strain Variation;330
14.5.2.5;8.4.2.5 Fatigue Modulus Degradation;330
14.5.2.6;8.4.2.6 Stress–Strain Curves;331
14.5.3;8.4.3 Bending Fatigue Test Results and Analysis;333
14.5.3.1;8.4.3.1 Testing Phenomena;333
14.5.3.2;8.4.3.2 S–N Curves;334
14.5.3.3;8.4.3.3 Strain Variation;334
14.6;8.5 Concluding Remarks;335
14.7;References;336
15;9 Bond–Slip Between Recycled Aggregate Concrete and Rebars;339
15.1;Abstract;339
15.2;9.1 Bond Between RAC and Normal Rebars;339
15.2.1;9.1.1 Test;339
15.2.1.1;9.1.1.1 Materials;339
15.2.1.2;9.1.1.2 Mix Proportion;340
15.2.1.3;9.1.1.3 Preparation of Specimens;340
15.2.1.4;9.1.1.4 Test Setup;341
15.2.2;9.1.2 Analysis;342
15.2.2.1;9.1.2.1 Load Versus Slip Curves;342
15.2.2.2;9.1.2.2 Bond Strength;343
15.2.2.3;9.1.2.3 Relative Bond Strength;345
15.2.2.4;9.1.2.4 Approximation of the Normalized Bond–Slip Relationship;345
15.2.2.5;9.1.2.5 Discussion on Anchorage Length;347
15.3;9.2 Bond Between RAC and Eroded Rebars;348
15.3.1;9.2.1 Test;348
15.3.1.1;9.2.1.1 Materials;348
15.3.1.2;9.2.1.2 Preparation of Specimens;349
15.3.1.3;9.2.1.3 Corrosion Setup;349
15.3.1.4;9.2.1.4 Determination of Steel Corrosion Rate;350
15.3.2;9.2.2 Analysis;351
15.3.2.1;9.2.2.1 Failure Mode;351
15.3.2.2;9.2.2.2 Bond–Slip Curves;352
15.3.2.3;9.2.2.3 Bond Strength;352
15.3.2.4;9.2.2.4 Bond Constitution Relationship;354
15.4;9.3 Concluding Remarks;356
15.5;References;358
16;10 Structural Behavior of Recycled Aggregate Concrete Elements;360
16.1;Abstract;360
16.2;10.1 RAC Beams;360
16.2.1;10.1.1 Flexural Behavior of RAC Beams;361
16.2.1.1;10.1.1.1 Test Design of RAC Beams;361
16.2.1.2;10.1.1.2 Analysis of RAC Beams;362
16.2.1.3;10.1.1.3 Bearing Capacity of RAC Beams;365
16.2.1.4;10.1.1.4 Reliability of RAC Beams;368
16.2.2;10.1.2 Shear Behavior of RAC Beams;370
16.2.2.1;10.1.2.1 Design of RAC Beams;370
16.2.2.2;10.1.2.2 Shear Failure of RAC Beams;370
16.2.2.3;10.1.2.3 The Shear Capacity of RAC Beams;372
16.3;10.2 RAC Semi-precast Beams;376
16.3.1;10.2.1 Design of RAC Semi-precast Beams;377
16.3.2;10.2.2 Flexural Behavior of RAC Semi-precast Beams;381
16.3.3;10.2.3 Shear Behavior of RAC Semi-precast Beams;385
16.4;10.3 RAC Slabs;391
16.4.1;10.3.1 Flexural Behavior of RAC Gradient Slabs;391
16.4.1.1;10.3.1.1 Design of RAC Gradient Slabs;393
16.4.1.2;10.3.1.2 Analysis of RAC Gradient Slabs;394
16.4.1.3;10.3.1.3 FEM Analysis of Flexural Performance of RAC Gradient Slab;400
16.4.1.4;10.3.1.4 Summary;403
16.4.2;10.3.2 Punching Shear Behavior of RAC Slabs;404
16.4.2.1;10.3.2.1 Design of Punching Shear RAC Slabs;404
16.4.2.2;10.3.2.2 Analysis of Punching Shear RAC Slabs;409
16.4.2.3;10.3.2.3 Summary of Punching Shear RAC Slabs;419
16.5;10.4 RAC Columns;420
16.5.1;10.4.1 Design of RAC Columns;420
16.5.2;10.4.2 Analysis of RAC Columns;420
16.5.3;10.4.3 Reliability Analysis of RAC Columns;424
16.6;10.5 Concluding Remarks;430
16.7;References;431
17;11 Seismic Performance of Recycled Aggregate Concrete Columns;433
17.1;Abstract;433
17.2;11.1 Introduction;433
17.3;11.2 Low-Frequency Reversed Loading of Semi-Precast Columns;435
17.3.1;11.2.1 Experimental Program;435
17.3.1.1;11.2.1.1 Test Materials;435
17.3.1.2;11.2.1.2 Design and Construction of the Specimens;436
17.3.1.3;11.2.1.3 Loading Device;436
17.3.1.4;11.2.1.4 Measurement and Data Acquisition Device;437
17.3.1.5;11.2.1.5 Loading Program;438
17.3.2;11.2.2 Test Analysis;441
17.3.2.1;11.2.2.1 General Experimental Observations;441
17.3.2.2;11.2.2.2 Failure Pattern of the Specimen;442
17.3.2.3;11.2.2.3 Lateral Displacement;443
17.3.2.4;11.2.2.4 Characteristic Loads;443
17.3.2.5;11.2.2.5 Hysteresis Loop;445
17.3.2.6;11.2.2.6 Skeleton Curve;447
17.3.2.7;11.2.2.7 Characteristic Displacement and Ductility;448
17.3.2.8;11.2.2.8 Deterioration of Stiffness;449
17.3.2.9;11.2.2.9 Energy Dissipation Capacity;450
17.3.2.10;11.2.2.10 Analysis of Shear Capacity by Present Codes;452
17.4;11.3 Low-Frequency Reversed Loading on Tube-Confined Columns;452
17.4.1;11.3.1 Experimental Program;452
17.4.1.1;11.3.1.1 Test Materials;452
17.4.1.2;11.3.1.2 Mix Proportions;453
17.4.1.3;11.3.1.3 Specimen and Testing Arrangement;453
17.4.1.4;11.3.1.4 Loading Program;456
17.4.2;11.3.2 Test Analysis;456
17.4.2.1;11.3.2.1 Crack Configuration and Hysteresis Loops;456
17.4.2.2;11.3.2.2 Yield Load and Peak Load;459
17.4.2.3;11.3.2.3 Skeleton Curve;462
17.4.2.4;11.3.2.4 Stiffness Deterioration;463
17.4.2.5;11.3.2.5 Ductility;464
17.4.2.6;11.3.2.6 Energy Dissipation;465
17.4.2.7;11.3.2.7 Strain Variation;465
17.5;11.4 Concluding Remarks;466
17.6;References;469
18;12 Seismic Performance of Recycled Aggregate Concrete Structures;470
18.1;Abstract;470
18.2;12.1 Introduction;470
18.3;12.2 Low-Frequency Reversed Loading on Frame Joints;470
18.3.1;12.2.1 Experimental Program;470
18.3.2;12.2.2 Test Result;473
18.3.3;12.2.3 Test Analysis;474
18.3.4;12.2.4 Nonlinear Analysis;477
18.4;12.3 Low-Frequency Reversed Loading on Plane Frame;481
18.4.1;12.3.1 Experimental Program;481
18.4.2;12.3.2 Test Analysis;484
18.5;12.4 Shaking Table Test on Cast-in-Situ Space Frame;490
18.5.1;12.4.1 Experimental Program;490
18.5.2;12.4.2 Test Analysis;494
18.5.3;12.4.3 Nonlinear Analysis;502
18.6;12.5 Shaking Table Test on Precast Space Frame;521
18.6.1;12.5.1 Experimental Program;521
18.6.1.1;12.5.1.1 Precast RAC frame model;521
18.6.1.2;12.5.1.2 Fabrication and construction of the model;523
18.6.1.3;12.5.1.3 Instruments;525
18.6.1.4;12.5.1.4 Seismic wave and loading program;526
18.6.2;12.5.2 Test Results and Analysis;527
18.6.2.1;12.5.2.1 Cracking and failure pattern;527
18.6.2.2;12.5.2.2 Dynamic characteristics;529
18.6.2.3;12.5.2.3 Acceleration amplification;532
18.6.2.4;12.5.2.4 Earthquake action;533
18.6.2.5;12.5.2.5 Deformation;536
18.6.2.6;12.5.2.6 Hysteretic and capacity curves;537
18.6.2.7;12.5.2.7 Displacement ductility;540
18.6.3;12.5.3 Simulation Modeling;541
18.6.4;12.5.4 Simulated Results and Validation;544
18.6.5;12.5.5 Parametric Study;555
18.7;12.6 Concluding Remarks;559
18.8;References;560
19;13 Seismic Performance of Recycled Aggregate Concrete Block Structures;562
19.1;Abstract;562
19.2;13.1 Design of the RAC Hollow Block Walls;562
19.2.1;13.1.1 Test Specimens;562
19.2.2;13.1.2 Test Set-up, Instruments, and Procedure;564
19.3;13.2 Test Results of the RAC Hollow Block Walls;565
19.3.1;13.2.1 Failure Patterns;565
19.3.2;13.2.2 The Role of Tie Column;567
19.3.3;13.2.3 Main Results;567
19.4;13.3 Seismic Performance Analysis;567
19.4.1;13.3.1 Hysteresis Curve;567
19.4.2;13.3.2 Skeleton Curve;568
19.4.3;13.3.3 Ductility Analysis;569
19.4.3.1;13.3.3.1 Displacement Ductility Coefficients;569
19.4.3.2;13.3.3.2 Comparison with the Ductility of the NAC Block Wall;570
19.4.4;13.3.4 Energy Dissipation Capacity;571
19.4.5;13.3.5 Stiffness Degradation;572
19.4.6;13.3.6 Overall Deformation;573
19.4.7;13.3.7 Steel Strain;574
19.5;13.4 Verification of Shear Bearing Capacity Formula for Hollow Block Walls;574
19.6;13.5 Design of the RAC Block Masonry Building;579
19.6.1;13.5.1 Materials;579
19.6.1.1;13.5.1.1 RAC Blocks;579
19.6.1.2;13.5.1.2 The RAC Mix Proportion;580
19.6.2;13.5.2 Construction;580
19.7;13.6 Shake Table Tests;580
19.7.1;13.6.1 Description of Shake Table;580
19.7.2;13.6.2 Seismic Wave Selection and Arrangement of Instruments;581
19.7.3;13.6.3 Loading Program;585
19.7.4;13.6.4 Cracking and Failure Pattern;587
19.8;13.7 Earthquake Response Analysis of the RAC Block Masonry Building;589
19.8.1;13.7.1 Dynamic Characteristics of the Structure;589
19.8.2;13.7.2 Acceleration Response;593
19.8.3;13.7.3 Earthquake Action;595
19.8.4;13.7.4 Displacement Response;596
19.8.5;13.7.5 Inter-storey Shear Response;597
19.8.6;13.7.6 Fragility Curves for RAC Block Masonry Building;601
19.9;13.8 Concluding Remarks;603
19.10;References;604
20;14 Products and Constructions with Recycled Aggregate Concrete;606
20.1;Abstract;606
20.2;14.1 Premix;606
20.2.1;14.1.1 Premix Recycled Concrete;607
20.2.2;14.1.2 RA Mortar;609
20.2.3;14.1.3 Cement Stabilizing RA;609
20.3;14.2 Precast;610
20.3.1;14.2.1 Brick and Block;610
20.3.2;14.2.2 Recycled Concrete Hollow Block Masonry;614
20.3.3;14.2.3 RAC Panel;617
20.4;14.3 Quality Control by Nondestructive Inspection;619
20.4.1;14.3.1 Rebound Hammer Test;619
20.4.2;14.3.2 Ultrasonic Pulse Velocity Test (UPV);620
20.5;14.4 Case Study;620
20.5.1;14.4.1 Pavements—In China;620
20.5.2;14.4.2 Cast-in-situ RAC Frame Structure;626
20.5.3;14.4.3 Precast RAC Frame Structure;627
20.5.4;14.4.4 RAC Masonry and Other Structures;628
20.5.5;14.4.5 RAC Frame-Shear Wall Structure;628
20.5.6;14.4.6 Steel Frame Filled with RA Bricks;631
20.6;14.5 Efficiency Analysis;633
20.6.1;14.5.1 Introduction;633
20.6.2;14.5.2 Economic Benefits;633
20.6.3;14.5.3 Overall Environmental Benefits;635
20.7;14.6 Management Strategies;638
20.7.1;14.6.1 The Recycled Concrete Industry Chain;639
20.7.2;14.6.2 Management Strategies of RAC;641
20.7.3;14.6.3 The Application of Computer Technology in RAC Production Management;644
20.8;14.7 Concluding Remarks;646
20.9;References;647
21;15 Guidelines for Recycled Aggregate Concrete Materials and Structures;648
21.1;Abstract;648
21.2;15.1 Waste Concrete;648
21.3;15.2 Crush and Sieving;649
21.3.1;15.2.1 Processing and Grading of Recycled Aggregates;649
21.3.2;15.2.2 Quality Standard for Recycled Aggregates;650
21.3.3;15.2.3 Testing Methods for Recycled Aggregates;650
21.3.4;15.2.4 Regulations for Inspection of Recycled Aggregates;651
21.3.5;15.2.5 Production and Management of Recycled Coarse Aggregates;652
21.3.6;15.2.6 Application of Recycled Fine Aggregates;653
21.4;15.3 Mix Proportion;653
21.4.1;15.3.1 Methods for the Design of the Mix Proportion;653
21.4.2;15.3.2 Preparation and Transportation;653
21.5;15.4 Materials;656
21.5.1;15.4.1 General Regulations;656
21.5.2;15.4.2 Mechanical Properties;657
21.5.3;15.4.3 Suggestions on the Design of Recycled Concrete Blocks;660
21.5.3.1;15.4.3.1 Basic Requirements for Recycled Concrete Blocks;660
21.5.3.2;15.4.3.2 Basic Assumptions for the Design of Recycled Concrete Blocks;662
21.6;15.5 Infrastructure;663
21.6.1;15.5.1 Design Suggestions for Recycled Concrete Pavements;663
21.6.1.1;15.5.1.1 Basic Regulations for Pavement Design;663
21.6.1.2;15.5.1.2 The Basic Construction Requirements for Pavement Surface;663
21.6.1.3;15.5.1.3 Pavement Construction and Quality Inspection;663
21.6.1.4;15.5.1.4 Pot-Hole Filling Layer and Basic Layer;664
21.6.2;15.5.2 Suggestions on the Design of Recycled Concrete Structural Components;664
21.6.2.1;15.5.2.1 Basic Requirements for Structural Components;664
21.6.2.2;15.5.2.2 Limit State of Safety;665
21.6.2.3;15.5.2.3 Limit State of Serviceability;666
21.7;15.6 Construction;667
21.7.1;15.6.1 Casting and Molding;667
21.7.2;15.6.2 Concrete Curing;667
21.7.3;15.6.3 Quality Inspection;668
21.8;References;669
22;16 Erratum to: Recycled Aggregate Concrete Structures;670
22.1;Erratum to: Recycled Aggregate Concrete Structures, Springer Tracts in Civil Engineering, https://doi.org/10.1007/978-3-662-53987-3;670



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.