Buch, Englisch, Band 9, 127 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 389 g
Buch, Englisch, Band 9, 127 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 389 g
Reihe: Engineering Applications of Computational Methods
ISBN: 978-981-19-4577-9
Verlag: Springer Nature Singapore
This book focuses on the performance optimization of fault diagnosis methods for power systems including both model-driven ones, such as the linear parameter varying algorithm, and data-driven ones, such as random matrix theory. Studies on fault diagnosis of power systems have long been the focus of electrical engineers and scientists. Pursuing a holistic approach to improve the accuracy and efficiency of existing methods, the underlying concepts toward several algorithms are introduced and then further applied in various situations for fault diagnosis of power systems in this book. The primary audience for the book would be the scholars and graduate students whose research topics including the control theory, applied mathematics, fault detection, and so on.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Energie- & Versorgungswirtschaft Energiewirtschaft: Alternative & Erneuerbare Energien
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Technische Wissenschaften Energietechnik | Elektrotechnik Energietechnik & Elektrotechnik
- Technische Wissenschaften Energietechnik | Elektrotechnik Alternative und erneuerbare Energien
Weitere Infos & Material
Introduction.- Fault Diagnosis of Variable Pitch for Wind Turbine Based on Multi-innovation Forgetting Gradient Identification Algorithm.- Active Fault-tolerant Linear Parameter Varying Control for the Pitch Actuator of Wind Turbines.- Fault Estimation and Fault-tolerant Control of Wind Turbines Using the SDW-LSI Algorithm.- A New Fault Diagnosis Approach for the Pitch System of Wind Turbines.