Buch, Englisch, 212 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 490 g
Buch, Englisch, 212 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 490 g
Reihe: Advances in Drying Science and Technology
ISBN: 978-0-367-41685-0
Verlag: CRC Press
Mass Transfer–Driven Evaporation from Capillary Porous Media offers a comprehensive review of mass transfer–driven drying processes in capillary porous media, including pore-scale and macro-scale experiments and models. It covers kinetics of drying of a single pore, pore-scale experiments and models, macro-scale experiments and models, and understanding of the continuum model from pore-scale studies. The book:
- Explains the detailed transport processes in porous media during drying.
- Introduces cutting-edge visualization experiments of drying in porous media.
- Describes the pore network models of drying in porous media.
- Discusses the continuum models of drying in porous media based on pore-scale studies.
- Points out future research opportunities.
Aimed at researchers, students and practicing engineers, this work provides vital fundamental and applied information to those working in drying technology, food processes, applied energy, and mechanical and chemical engineering.
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Lebensmitteltechnologie und Getränketechnologie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Verfahrenstechnik, Chemieingenieurwesen
Weitere Infos & Material
1. Slow evaporation in capillary porous media: State of the Art. 2. Evaporation from a straight tube. 3. Pore scale experiments. 4. A mesoscopic approach for evaporation from capillary porous media: Shan Chen Lattice Boltzmann method. 5. Pore network models. 6. Continuum models. 7. A continuum approach to the drying of small pore networks.