Wu | Fusion Neutronics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 402 Seiten

Wu Fusion Neutronics


1. Auflage 2017
ISBN: 978-981-10-5469-3
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 402 Seiten

ISBN: 978-981-10-5469-3
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research.Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author's more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.

Prof. Yican Wu is the director general of Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences (CAS), the director of Key Laboratory of Neutronics and Radiation Safety, CAS, and the leader of FDS Team. He has been serving as the Executive Committee Chair of IEA ESEFP TCP and IAEA consultant. His research involves nuclear science and engineering, nuclear safety and other interdisciplinary research. He has published over 400 papers and received over 10 important awards including the National Natural Science Award and the Science and Technology Award of China Nuclear Energy Association.

Wu Fusion Neutronics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword I;5
2;Foreword II;5
3;Preface;10
4;Acknowledgements;12
5;Contents;13
6;1 Introduction;19
6.1;1.1 Fusion Neutrons;20
6.2;1.2 Fusion Facilities;22
6.2.1;1.2.1 Magnetic Confinement Fusion Facilities;22
6.2.1.1;1.2.1.1 Tokamaks;22
6.2.1.2;1.2.1.2 Stellarators;25
6.2.1.3;1.2.1.3 Reversed Field Pinches;25
6.2.1.4;1.2.1.4 Magnetic Mirrors;26
6.2.1.5;1.2.1.5 Z-Pinches;26
6.2.2;1.2.2 Inertial Confined Fusion Facilities;27
6.2.3;1.2.3 Other Fusion Facilities;28
6.3;1.3 Fusion Energy Development Programs;29
6.4;1.4 Fusion Neutronics;31
6.4.1;1.4.1 Neutronics Characteristics of Fusion Systems;31
6.4.2;1.4.2 Introduction to Fusion Neutronics;32
6.4.2.1;1.4.2.1 Neutronics Theories and Methodologies;32
6.4.2.2;1.4.2.2 Fusion Neutronics Designs;33
6.4.2.3;1.4.2.3 Fusion Neutronics Experiments;34
6.5;References;35
7;Neutronics Theories and Methodologies for Fusion;36
8;2 Neutron Transport Theory and Simulation;37
8.1;2.1 Interaction of Neutrons with Matter;37
8.2;2.2 Foundation of Neutron Transport Theory;40
8.2.1;2.2.1 Neutron Transport Equation;41
8.2.2;2.2.2 Fixed Source and Eigenvalue Problems;45
8.3;2.3 Neutron Transport Computational Methods;47
8.3.1;2.3.1 Monte Carlo Methods;47
8.3.1.1;2.3.1.1 Basic Principles;48
8.3.1.2;2.3.1.2 Estimation Methods for Physical Quantities;50
8.3.1.3;2.3.1.3 Monte Carlo Acceleration Method;52
8.3.2;2.3.2 Deterministic Methods;64
8.3.2.1;2.3.2.1 The Discrete Ordinates Method;65
8.3.2.2;2.3.2.2 The Method of Characteristics;68
8.3.2.3;2.3.2.3 The Spherical Harmonics Method;70
8.3.2.4;2.3.2.4 Acceleration Methods;72
8.4;2.4 Transport Simulation Codes;75
8.4.1;2.4.1 Monte Carlo Codes;75
8.4.1.1;2.4.1.1 SuperMC;75
8.4.1.2;2.4.1.2 MCNP;76
8.4.1.3;2.4.1.3 TRIPOLI;77
8.4.1.4;2.4.1.4 Serpent;77
8.4.1.5;2.4.1.5 Geant4;77
8.4.1.6;2.4.1.6 FLUKA;78
8.4.1.7;2.4.1.7 PHITS;78
8.4.2;2.4.2 Deterministic Codes;78
8.4.2.1;2.4.2.1 DOORS;78
8.4.2.2;2.4.2.2 ATTILA;79
8.5;References;79
9;3 Neutron-Induced Transmutation and Activation;81
9.1;3.1 Principles of Transmutation and Activation;81
9.1.1;3.1.1 Material Activation;82
9.1.2;3.1.2 Tritium Breeding;83
9.1.3;3.1.3 Fission Fuel Breeding and Depletion;84
9.1.4;3.1.4 Nuclear Waste Transmutation;84
9.2;3.2 Typical Parameters of Transmutation and Activation;87
9.2.1;3.2.1 Material Activation;87
9.2.2;3.2.2 Tritium Breeding;89
9.2.3;3.2.3 Fission Fuel Breeding and Depletion;89
9.2.3.1;3.2.3.1 Fission Fuel Breeding;89
9.2.3.2;3.2.3.2 Fission Fuel Depletion;89
9.2.4;3.2.4 Nuclear Waste Transmutation;90
9.3;3.3 Calculation Methods of Transmutation and Activation;91
9.3.1;3.3.1 Bateman Equation;92
9.3.2;3.3.2 Analytic Methods;93
9.3.3;3.3.3 Numerical Methods;96
9.3.3.1;3.3.3.1 Finite Difference Methods of Ordinary Differential Equations;96
9.3.3.2;3.3.3.2 Matrix Exponential Methods;99
9.4;3.4 Transmutation and Activation Simulation Codes;102
9.5;References;105
10;4 Neutron Irradiation and Material Damage;106
10.1;4.1 Mechanisms of Neutron Irradiation Damage;106
10.2;4.2 Displacement Damage;108
10.2.1;4.2.1 Primary Collisions;108
10.2.2;4.2.2 Cascade Collisions;109
10.2.3;4.2.3 Displacement Damage Calculations;110
10.2.3.1;4.2.3.1 Damage Dose;111
10.2.3.2;4.2.3.2 Energy Deposition;112
10.3;4.3 Neutron Irradiation Effects on the Microstructure and Properties of Materials;113
10.3.1;4.3.1 Irradiation Effects on Material Microstructure;113
10.3.2;4.3.2 Irradiation Effects on Material Properties;116
10.3.2.1;4.3.2.1 Irradiation Swelling;117
10.3.2.2;4.3.2.2 Mechanical Properties;118
10.3.2.3;4.3.2.3 Physical Properties;120
10.4;4.4 Research Methods of Fusion Neutron Irradiation Damage to Materials;122
10.4.1;4.4.1 Experimental Studies on Neutron Irradiation Damage;122
10.4.2;4.4.2 Numerical Simulations of Neutron Irradiation Damage;124
10.4.2.1;4.4.2.1 Codes for Displacement Damage Calculation;124
10.4.2.2;4.4.2.2 Multi-Scale Simulation of Irradiation Damage;125
10.5;References;127
11;5 Radiation Dosimetry and Biological Safety;129
11.1;5.1 Principles and Requirements of Radiological Protection;129
11.2;5.2 Radioactive Sources and Nuclide Migration;132
11.2.1;5.2.1 Radioactive Source Terms;132
11.2.2;5.2.2 Radionuclide Migration in Fusion Systems;133
11.2.3;5.2.3 Radionuclide Migration in the Environment;134
11.3;5.3 Radiation Dosimetry Calculations;139
11.3.1;5.3.1 Dosimetric Quantities in Radiological Protection;139
11.3.2;5.3.2 External Exposure Calculations;143
11.3.3;5.3.3 Internal Exposure Calculations;147
11.4;5.4 Biological Effects of Radiation;151
11.4.1;5.4.1 Principles of the Biological Effects of Radiation;151
11.4.2;5.4.2 Biological Effects of Tritium;152
11.4.3;5.4.3 Biological Effects of Neutrons;154
11.5;References;157
12;6 Fusion Nuclear Data Libraries;159
12.1;6.1 Introduction to Nuclear Data Libraries;159
12.1.1;6.1.1 Experimental Nuclear Data Libraries;160
12.1.2;6.1.2 Evaluated Nuclear Data Libraries;160
12.1.3;6.1.3 Application Nuclear Data Libraries;161
12.2;6.2 Transport Nuclear Data Libraries;162
12.2.1;6.2.1 Processing Methods for Transport Nuclear Data Libraries;162
12.2.1.1;6.2.1.1 Resonance Reconstruction;163
12.2.1.2;6.2.1.2 Doppler Broadening;165
12.2.1.3;6.2.1.3 Multi-group Processing;169
12.2.2;6.2.2 Typical Transport Nuclear Data Libraries;173
12.2.2.1;6.2.2.1 Hybrid Evaluated Nuclear Data Library—SuperMC/HENDL;173
12.2.2.2;6.2.2.2 Fusion Evaluated Nuclear Data Library—FENDL;174
12.3;6.3 Transmutation and Activation Nuclear Data Libraries;174
12.3.1;6.3.1 Activation Cross-section Libraries;175
12.3.1.1;6.3.1.1 Processing Method for Activation Cross-section Libraries;175
12.3.1.2;6.3.1.2 Typical Activation Cross-section Libraries;176
12.3.2;6.3.2 Decay Data Libraries;177
12.3.3;6.3.3 Fission Yields Data Libraries;177
12.4;6.4 Radiation Damage Nuclear Data Libraries;178
12.4.1;6.4.1 Processing Methods of Radiation Damage Nuclear Data Libraries;179
12.4.1.1;6.4.1.1 Gas Production Cross-sections;179
12.4.1.2;6.4.1.2 Displacement Damage Cross-sections;179
12.4.2;6.4.2 Typical Radiation Damage Nuclear Data Libraries;182
12.4.2.1;6.4.2.1 Radiation Damage Nuclear Data Library in SuperMC/HENDL;182
12.4.2.2;6.4.2.2 Radiation Damage Nuclear Data Library Provided in the NPRIM Code Package;182
12.4.2.3;6.4.2.3 Radiation Damage Nuclear Data Library Provided in the SPECTER Code Package;183
12.5;References;183
13;7 Comprehensive Neutronics Simulations;185
13.1;7.1 Framework of Comprehensive Simulation Systems;185
13.1.1;7.1.1 Main Simulation Objects;186
13.1.2;7.1.2 Key Issues;187
13.1.3;7.1.3 Typical System Architectures;188
13.2;7.2 Accurate Modeling;189
13.2.1;7.2.1 CSG Modeling;190
13.2.2;7.2.2 Facet Modeling;196
13.2.3;7.2.3 Mesh Modeling;197
13.2.4;7.2.4 Voxel-Based Modeling;198
13.3;7.3 Whole-Process and Multiphysics Coupling Neutronics Calculations;200
13.3.1;7.3.1 MC and Deterministic Coupling Calculations;201
13.3.2;7.3.2 Whole-Process Neutronics Calculations;205
13.3.3;7.3.3 Multiphysics Coupling Neutronics Calculations;206
13.4;7.4 Multidimensional Visualized Analyses and Virtual Simulations;208
13.4.1;7.4.1 Multidimensional Visualized Analyses;208
13.4.2;7.4.2 Virtual Simulations;211
13.5;7.5 Typical Simulation Systems;214
13.5.1;7.5.1 SuperMC;214
13.5.2;7.5.2 ISPC;217
13.6;References;218
14;Fusion Neutronics Design Principles;220
15;8 Neutronics Design of Fusion Experimental Reactors;221
15.1;8.1 Introduction to Fusion Experimental Reactors;221
15.2;8.2 Objectives of ITER Neutronics Design;224
15.3;8.3 Methods of ITER Neutronics Design;227
15.4;8.4 Neutronics Design of the ITER Tokamak;233
15.4.1;8.4.1 Test Blanket Modules;233
15.4.2;8.4.2 Shielding Blankets;235
15.4.3;8.4.3 Divertors;239
15.4.4;8.4.4 Ports and Port Plugs;241
15.4.5;8.4.5 Cooling Water Systems;244
15.4.6;8.4.6 Vacuum Vessel;246
15.4.7;8.4.7 Superconducting Magnets;249
15.4.8;8.4.8 Thermal Shield;251
15.5;8.5 Neutronics Design of ITER Buildings;253
15.5.1;8.5.1 Radiological Zoning;253
15.5.2;8.5.2 Shielding Design of the Buildings;254
15.6;8.6 Safety Analysis and Environment Impact Assessment of ITER;263
15.7;References;266
16;9 Neutronics Design Principles of DEMO Reactors and Fusion Power Reactors;268
16.1;9.1 Introduction to DEMO Reactors and FPRs;268
16.1.1;9.1.1 Principles of DEMO and FPRs;268
16.1.2;9.1.2 Features of FPRs;272
16.1.3;9.1.3 Conceptual Design of Typical FPRs;273
16.2;9.2 Neutronics Design of FPRs;275
16.2.1;9.2.1 Design Objectives;275
16.2.2;9.2.2 Design Methods;276
16.2.3;9.2.3 Examples of FPR Neutronics Design;281
16.3;References;293
17;10 Neutronics Design Principles of Fusion-Fission Hybrid Reactors;294
17.1;10.1 Introduction to Hybrid Reactors;294
17.1.1;10.1.1 Principles of Hybrid Reactors;294
17.1.2;10.1.2 Features of Hybrid Reactors;296
17.1.3;10.1.3 Typical Design Concepts;299
17.2;10.2 Neutronics Design of Hybrid Reactors;303
17.2.1;10.2.1 Neutronics Design Objectives;303
17.2.2;10.2.2 Neutronics Design Methods;304
17.2.3;10.2.3 Examples of Hybrid Reactor Neutronics Design;308
17.3;References;319
18;Fusion Neutronics Experiment Technologies;320
19;11 Experimental Methods of Fusion Neutronics;321
19.1;11.1 Characteristics of Fusion Neutronics Experiments;321
19.2;11.2 Fusion Neutron Detection Techniques;323
19.2.1;11.2.1 Principles of Neutron Detection;323
19.2.2;11.2.2 Measurements of Neutron Flux;326
19.2.3;11.2.3 Measurements of Neutron Energy Spectrum;333
19.3;11.3 Methods of Neutron Cross-section Measurements;342
19.3.1;11.3.1 Measurements of Total Cross-sections;342
19.3.2;11.3.2 Measurements of Differential Cross-sections;343
19.4;11.4 Methods of Various Macroscopic Integral Measurements;345
19.4.1;11.4.1 Measurements of Neutron Multiplication Factors;345
19.4.2;11.4.2 Measurements of Tritium Production Rates;346
19.4.3;11.4.3 Measurements of Nuclear Heat Deposition;348
19.4.4;11.4.4 Measurements of Transmission Probability Spectrum;349
19.4.5;11.4.5 Measurements of Neutron Activation Rates;349
19.4.6;11.4.6 Measurements of Radiation Dose;350
19.4.7;11.4.7 Measurements of Other Macroscopic Integrals;350
19.5;References;353
20;12 Experimental Facilities of Fusion Neutronics;355
20.1;12.1 Introduction to Neutron Sources;355
20.2;12.2 Accelerator-Based Fusion Neutron Sources;357
20.3;12.3 Fusion Reactor-Based Neutron Sources;363
20.4;12.4 Other Neutron Sources;367
20.5;References;373
21;13 Fusion Neutronics Experiments;374
21.1;13.1 Measurement and Validation Experiments for Nuclear Data;374
21.1.1;13.1.1 Experiments for Neutron Transport Cross-sections;375
21.1.2;13.1.2 Experiments for Neutron-Induced Transmutation and Activation Cross-sections;378
21.1.3;13.1.3 Experiments for Nuclear Decay and Dose;380
21.2;13.2 Validation Experiments for Neutronics Methods and Codes;380
21.2.1;13.2.1 Neutron Transport Code Validation;382
21.2.2;13.2.2 Neutron Transmutation and Activation Code Validation;384
21.2.3;13.2.3 Dose Calculation Method Validation;385
21.3;13.3 Validation Experiments for Fusion Nuclear Designs;387
21.3.1;13.3.1 Tritium Breeding Experiments;387
21.3.2;13.3.2 Shielding Experiments;388
21.3.3;13.3.3 Radiation Dose Experiments;392
21.3.4;13.3.4 Material Activation Experiments;393
21.3.5;13.3.5 Material Irradiation Experiments;395
21.3.6;13.3.6 Blanket Experiments for Fusion-Fission Hybrid Reactors;399
21.4;13.4 Prospects of Fusion Neutronics Experiments;399
21.5;References;401



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.