Wu | Data Mining with Python | Buch | 978-1-032-61264-5 | sack.de

Buch, Englisch, 414 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 974 g

Reihe: Chapman & Hall/CRC The Python Series

Wu

Data Mining with Python

Theory, Application, and Case Studies
1. Auflage 2024
ISBN: 978-1-032-61264-5
Verlag: Chapman and Hall/CRC

Theory, Application, and Case Studies

Buch, Englisch, 414 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 974 g

Reihe: Chapman & Hall/CRC The Python Series

ISBN: 978-1-032-61264-5
Verlag: Chapman and Hall/CRC


Data is everywhere and it’s growing at an unprecedented rate. But making sense of all that data is a challenge. Data Mining is the process of discovering patterns and knowledge from large data sets, and Data Mining with Python focuses on the hands-on approach to learning Data Mining. It showcases how to use Python Packages to fulfill the Data Mining pipeline, which is to collect, integrate, manipulate, clean, process, organize, and analyze data for knowledge.

The contents are organized based on the Data Mining pipeline, so readers can naturally progress step by step through the process. Topics, methods, and tools are explained in three aspects: “What it is” as a theoretical background, “why we need it” as an application orientation, and “how we do it” as a case study.

This book is designed to give students, data scientists, and business analysts an understanding of Data Mining concepts in an applicable way. Through interactive tutorials that can be run, modified, and used for a more comprehensive learning experience, this book will help its readers to gain practical skills to implement Data Mining techniques in their work.

Wu Data Mining with Python jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Section I. Data Wrangling 1. Data Collection. 2. Data Integration 3. Data Statistics 4. Data Visualization 5. Data Preprocessing Section II. Data Analysis 6. Classification 7. Regression 8. Clustering 9. Frequent Patterns 10. Outlier Detection


Dr. Di Wu is an Assistant Professor of Finance, Information Systems, and Economics department of Business School, Lehman College. He obtained a Ph.D. in Computer Science from the Graduate Center, CUNY. Dr. Wu’s research interests are 1) Temporal extensions to RDF and semantic web, 2) Applied Data Science, and 3) Experiential Learning and Pedagogy in business education. Dr. Wu developed and taught courses including Strategic Management, Databases, Business Statistics, Management Decision Making, Programming Languages (C++, Java, and Python), Data Structures and Algorithms, Data Mining, Big Data, and Machine Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.