Buch, Englisch, 504 Seiten, Format (B × H): 178 mm x 254 mm
Buch, Englisch, 504 Seiten, Format (B × H): 178 mm x 254 mm
Reihe: Handbook Series for Mechanical Engineering
ISBN: 978-1-032-86881-3
Verlag: Taylor & Francis Ltd
Leading experts in inverse problems have joined forces to produce a new edition of the definitive reference that allows readers to understand, implement, and benefit from a variety of problem-solving techniques.
The focus of most of the work in this new edition is on parabolic and elliptic problems typified by transient and steady-state heat conduction; however, the scope of application extends to any mathematically similar problems (in chemical transport, mass transfer, etc.) As well as revision to existing chapters, this second edition includes four new chapters: a new chapter on the classis Tikhonov regularization technique, a new chapter on the topic of filter coefficient concepts for linear problems, a chapter dedicated to Bayesian solution of inverse problems, and finally a new chapter on machine learning and artificial intelligence.
Anyone interested in inverse problems, regardless of their specialty, will find the Inverse Engineering Handbook to be a unique and invaluable compendium of up-to-date techniques.
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Technische Wissenschaften Bauingenieurwesen Bauingenieurwesen
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
• Sequential Methods in Parameter Estimation
• Sequential Function Specification Method
• Tikhonov Regularization and Optimal Regularization
• Filter Coefficient Concepts in Inverse Problems
• The Adjoint Method to Compute the Numerical Solutions of Inverse Problems
• The Effect of Correlations and Uncertain Parameters on the Efficiency of Estimating and the Precision of Estimated Parameters
• Bayesian Methods for Inverse Problems
• Machine Learning and Artificial Intelligence for Inverse Problems
• Mollification and Space Marching
• Inverse Heat Conduction Using Monte Carlo Method
• Boundary Element Techniques for Inverse Problems
• Optimal Experiment Design To Solve Inverse Heat Transfer Problems




