Wong | Epistasis | E-Book | sack.de
E-Book

E-Book, Englisch, Band 2212, 402 Seiten, eBook

Reihe: Methods in Molecular Biology

Wong Epistasis

Methods and Protocols
Erscheinungsjahr 2021
ISBN: 978-1-0716-0947-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Methods and Protocols

E-Book, Englisch, Band 2212, 402 Seiten, eBook

Reihe: Methods in Molecular Biology

ISBN: 978-1-0716-0947-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume explores methods and protocols for detecting epistasis from genetic data. Chapters provide methods and protocols demonstrating approaches to identify epistasis, genetic epistasis testing, genome-wide epistatic SNP networks, epistasis detection through machine learning, and complex interaction analysis using trigenic synthetic genetic array (t-SGA). Written in the highly successful  Methods in Molecular Biology  series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls.   Authoritative and cutting-edge, Epistasis: Methods and Protocols aims to ensure successful results in the further study of this vital field.   "Simulating Evolution in Asexual Populations with Epistasis” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Wong Epistasis jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Mass-based Protein Phylogenetic Approach to Identify Epistasis.-  SNPInt-GPU : Tool for epistasis testing with multiple methods and GPU acceleration.- Epistasis-based Feature Selection Algorithm.- W-test for Genetic Epistasis Testing.- The Combined Analysis of Pleiotropy and Epistasis (CAPE).- Two-Stage Testing for Epistasis: Screening and Veri_cation.- Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.- Phenotype Prediction under Epistasis.- Simulating Evolution in Asexual Populations with Epistasis.- Protocol for Construction of Genome-Wide Epistatic SNP Networks using WISH-R Package.- Brief survey on Machine Learning in Epistasis.- First-Order Correction of Statistical Significance for Screening Two-Way Epistatic Interactions.- Gene-Environment Interaction:  AVariable Selection Perspective.- Using C-JAMP to Investigate Epistasis and Pleiotropy.- Identifying the Significant Change of Gene Expression in Genomic Series Data.- Analyzing High-Order Epistasis from Genotype-phenotype Maps Using ’Epistasis’ Package.- Deep Neural Networks for Epistatic Sequences Analysis.- Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.- A Belief Degree Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.- Epistasis Detection Based on Epi-GTBN.- Epistasis Analysis: Classification through Machine Learning Methods.- Genetic Interaction Network Interpretation: A Tidy Data Science Perspective.- Trigenic Synthetic Genetic Array (t-SGA) Technique for Complex Interaction Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.