Buch, Deutsch, 1098 Seiten, Format (B × H): 184 mm x 249 mm, Gewicht: 1960 g
ISBN: 978-3-531-16339-0
Verlag: VS Verlag für Sozialw.
Jedes Kapitel beginnt mit einer allgemein verständlichen Einführung. Es folgt eine Darstellung der mathematisch-statistischen Grundlagen. Anschließend wird jedes Verfahren anhand eines sozialwissenschaftlichen Beispiels vorgestellt. Die Beiträge enden mit Hinweisen auf typische Anwendungsfehler und einer kommentierten Literaturempfehlung.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Einführung.- Einführung: Sozialwissenschaftliche Datenanalyse.- Kausalität als Gegenstand der Sozialwissenschaften und der multivariaten Statistik.- Grundlagen der Datenanalyse.- Datengewinnung und Datenaufbereitung.- Uni-und bivariate deskriptive Statistik.- Graphische Datenexploration.- Der Umgang mit fehlenden Werten.- Gewichtung.- Grundlagen des statistischen Schließens.- Einführung in die Inferenz durch den nichtparametrischen Bootstrap.- Maximum-Likelihood Schätztheorie.- Messen und Skalieren.- Reliabilität, Validität, Objektivität.- Thurstone-und Likertskalierung.- Guttman-und Mokkenskalierung.- Item-Response-Theorie.- Hauptkomponentenanalyse und explorative Faktorenanalyse.- Korrespondenzanalyse.- Multidimensionale Skalierung.- Analyse von Häufigkeiten, Gruppen und Beziehungen.- Analyse kategorialer Daten.- Varianz-und Kovarianzanalyse.- Diskriminanzanalyse.- Clusteranalyse.- Analyse latenter Klassen.- Netzwerkanalyse.- Regressionsverfahren für Querschnittsdaten.- Lineare Regressionsanalyse.- Lineare Regression: Modellannahmen und Regressionsdiagnostik.- Nicht-Linearität und Nicht-Additivität in der multiplen Regression: Interaktionseffekte, Polynome und Splines.- Robuste Regression.- Mehrebenenanalyse mit Querschnittsdaten.- Strukturgleichungsmodelle.- Regression mit unbekannten Subpopulationen.- Logistische Regression.- Multinomiale und ordinale Regression.- Regression für Zählvariablen.- Graphische Darstellung regressionsanalytischer Ergebnisse.- Analyse von zeitbezogenen Daten.- Nichtparametrische Schätzung kausaler Effekte mittels Matchingverfahren.- Kausalanalyse mit Paneldaten.- Survival-und Ereignisanalyse.- Latente Wachstumskurvenmodelle.- Sequenzdatenanalyse.- Zeitreihenanalyse.




