Witowski | Machine Learning in Empirical CAT Bond Pricing | Buch | 978-3-68952-006-9 | sack.de

Buch, Englisch, 158 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 214 g

Witowski

Machine Learning in Empirical CAT Bond Pricing


1. Auflage 2024
ISBN: 978-3-68952-006-9
Verlag: Cuvillier

Buch, Englisch, 158 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 214 g

ISBN: 978-3-68952-006-9
Verlag: Cuvillier


Diese Dissertation befasst sich mit der Prognose von CAT-Bond-Risikoprämien. Sowohl auf dem Primärmarkt als auch auf dem Sekundärmarkt werden zu diesem Zweck klassische lineare Regressionsmodelle mit verschiedenen fortgeschrittenen Verfahren des maschinellen Lernens verglichen. Die Unterschiede in der Prognosegüte zwischen den unterschiedlichen Verfahren werden mittels Diebold-Mariano-Test auf Signifikanz überprüft. Auf beiden Märkten liefert ein Random Forest Ansatz die präzisesten Prognoseergebnisse. Fortgeschrittene Methoden des maschinellen Lernens haben gegenüber der traditionellen linearen Regression den Nachteil, dass sie oft als Blackbox angesehen werden. Für institutionelle Anleger kann ein Mangel an Transparenz die Anwendbarkeit von Methoden zur Preisprognose einschränken, da sie verpflichtet sind interpretierbare und erklärbare Methoden zu verwenden. Vor diesem Hintergrund werden in dieser Arbeit Verfahren zur Interpretation der aus dem Random Forest ableitbaren Variablenwichtigkeiten angewendet. Liegt kein Gewicht auf der Erklärbarkeit der Ergebnisse, so ist die Anwendung eines autoregressiven Modells zur Prognose von CAT-Bond-Sekundärmarktprämien ausreichend.

Witowski Machine Learning in Empirical CAT Bond Pricing jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.