Eine Einführung mit Beispielen, Aufgaben und Musterlösungen
Buch, Deutsch, 244 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 462 g
ISBN: 978-3-519-00515-5
Verlag: Vieweg+Teubner Verlag
Ausgehend von Beispielen aus der Physik und der Biologie wird die Theorie der gewöhnlichen Differentialgleichungen im Hinblick auf die Theorie dynamischer Systeme entwickelt. Dabei liegt der Schwerpunkt sowohl auf mathematischer Präzision als auch auf der klaren Darstellung von Verbindungen der mathematischen Modelle zu Naturphänomenen und naturphilosophischen Ideen. So werden Resultate zur Existenz, Eindeutigkeit und stetigen Abhängigkeit in Verbindung mit dem Laplaceschen Dämon und dem Schmetterlingseffekt aus der Chaos-Theorie diskutiert und Theoreme zum Langzeitverhalten von Lösungen gewöhnlicher Differentialgleichungen in ihrem Zusammenhang mit dem Maxwellschen Dämon und dem Volterra-Effekt in der Biologie dargestellt.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Einführung.- Der Existenzsatz von Peano.- Globale Existenz und Eindeutigkeit.- Phasenportraits und Stabilität.- Lineare Differentialgleichungen.- Autonome lineare Systeme.- Stetigkeit und Differenzierbarkeit.- Dynamische Systeme und lokale Flüsse.- Langzeitverhalten von Lösungen.- Die Liouvillesche Volumenformel.