Winn | Model-Based Machine Learning | Buch | 978-1-4987-5681-5 | sack.de

Buch, Englisch, 400 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 904 g

Winn

Model-Based Machine Learning

Buch, Englisch, 400 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 904 g

ISBN: 978-1-4987-5681-5
Verlag: CRC Press


Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system.

The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem.

Features:

- Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems.

- Explains machine learning concepts as they arise in real-world case studies.

- Shows how to diagnose, understand and address problems with machine learning systems.

- Full source code available, allowing models and results to be reproduced and explored.

- Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.
Winn Model-Based Machine Learning jetzt bestellen!

Zielgruppe


Postgraduate and Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Introduction. How Can Machine Learning Solve my Problem? 1. A Murder Mystery 2. Assessing People’s Skills Interlude. The Machine Learning Life Cycle 3. Meeting Your Match 4. Uncluttering Your Inbox 5. Making Recommendations 6. Understanding Asthma 7. Harnessing the Crowd 8. How to Read a Model Afterword


John Winn is a Principal Researcher at Microsoft Research, UK.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.