Buch, Englisch, 282 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 629 g
Using SAS, SPSS, R and STATA
Buch, Englisch, 282 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 629 g
Reihe: ICSA Book Series in Statistics
ISBN: 978-3-031-62426-1
Verlag: Springer International Publishing
This book is an updated edition of , and now it includes the use of STATA. It uses these Statistical tools to analyze correlated binary data, accessible to practitioners in a single volume. Chapters cover recently developed statistical tools and statistical packages, as well as showcase both traditional and new methods for application to health-related research. Data analysis presented in each chapter will provide step-by-step instructions so these new methods can be readily applied to projects. Short tutorials are in the appendix, for readers interested in learning more about the languages.
Data and computer programs will be publicly available in order for readers to replicate model development, but learning a new statistical language is not necessary with this book. The inclusion of code for R, SAS, SPSS and STATA, allows for easy implementation by readers. Researchers and graduate students in Statistics, Epidemiology, and Public Health will find this book particularly useful.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
Weitere Infos & Material
Introduction to Binary logistic Regression.- Growth of the Logistic Regression Model.- Standard Binary Logistic Regression Model.- Overdispersed Logistic Regression Model.- Weighted Logistic Regression Model.- Generalized Estimating Equations Logistic Regression.- Generalized Method of Moments logistic regression Model.- Exact Logistic Regression Model.- Two-Level Nested Logistic Regression Model.- Hierarchical Logistic Regression models.- Fixed Effects Logistic Regression Model.- Heteroscedastic Logistic Regression Model.