Whidborne / Istepanian | Digital Controller Implementation and Fragility | Buch | 978-1-85233-390-4 | sack.de

Buch, Englisch, 277 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g

Reihe: Advances in Industrial Control

Whidborne / Istepanian

Digital Controller Implementation and Fragility

A Modern Perspective
1. Auflage. 2001
ISBN: 978-1-85233-390-4
Verlag: Springer

A Modern Perspective

Buch, Englisch, 277 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g

Reihe: Advances in Industrial Control

ISBN: 978-1-85233-390-4
Verlag: Springer


Written by leading researchers, this book collects a number of articles considering the problems of finite-precision computing in digital controllers and filters. Topics range from analysis of fragility and finite-precision effects to the design of low-complexity digital controllers.

Whidborne / Istepanian Digital Controller Implementation and Fragility jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Finite-precision Computing for Digital Control Systems: Current Status and Future Paradigms.- 1.1 Introduction.- 1.2 Finite-precision Control and Fragility.- 1.3 Hardware Issues and Development of Control System Process ing Structures.- 1.4 Future Paradigms and Relevant Research Problems.- References.- 2 Stability Margins and Digital Implementation of Controllers.- 2.1 Introduction.- 2.2 Digital Implementation.- 2.3 Simulation Setup.- 2.4 Examples.- 2.5 Concluding Remarks.- Acknowledgements.- References.- 3 Finite Word-length Effects in Systems with Fast Sampling.- 3.1 Introduction.- 3.2 The Case of Small Sampling Periods.- 3.3 A Reformulated Aström’s Theorem.- 3.4 Estimation of the Word-length.- 3.5 Examples.- 3.6 Remarks about Regulator Design and Implementation.- 3.7 Problems with Model Identification.- 3.8 Conclusions and Notes.- References.- 4 Implementation of a Class of Low Complexity, Low Sensitivity Digital Controllers Using Adaptive Fixed-point Arithmetic.- 4.1 Introduction.- 4.2 Digital Feedback Controller.- 4.3 Q-Parameterized Controller.- 4.4 Dynamically Scaled Controllers.- 5 Convexity and Diagonal Stability: an LMI Approach to Digital Filter Implementation.- 5.1 Introduction.- 5.2 Convex Approach to the Diagonal Stability Issue.- 5.3 Application to Digital Filter Implementations.- 5.4 Concluding Remarks.- 6 The Determination of Optimal Finite-precision Controller Realisations Using a Global Optimisation Strategy: a Pole-sensitivity Approach.- 6.1 Introduction.- 6.2 Problem Formulation.- 6.3 A New Pole-sensitivity Stability Related Measure.- 6.4 Optimisation Procedure.- 6.5 A Numerical Example.- 6.6 Conclusions.- References.- 7 Computational Algorithms For Sparse Optimal Digital Controller Realisations.- 7.1 Introduction.- 7.2 Digital ControllerCoefficient Quantisation.- 7.3 Stability-optimal Controller Realisations.- 7.4 Numerical Issues.- 7.5 Concluding Remarks.- References.- 8 On the Structure of Digital Controllers in Sampled-data Systems with Stability Consideration.- 8.1 Introduction.- 8.2 Digital Controller State Space Implementation.- 8.3 A Stability Robustness Related Measure.- 8.4 Optimal Controller Structures.- 8.5 Sparse Structures.- 8.6 A Design Example.- References.- 9 An Evolutionary Algorithm Approach to the Design of Finite Word-length Controller Structures.- 9.1 Introduction.- 9.2 Multi-objective Optimisation.- 9.3 Evolutionary Algorithms and the Multi-objective Genetic Algorithm.- 9.4 A Linear System Equivalence Completion Problem.- 9.5 FWL Controller Structure Design using Evolutionary Computation.- 9.6 Application Example.- 9.7 Concluding Remarks.- References.- 10 Non-fragile Robust Controller Design.- 10.1 Introduction.- 10.2 Robustness and Fragility Analysis.- 10.3 Another View on Robustness and Fragility.- 10.4 Factored Controller Form.- 10.5 Partial Fraction Controller Form.- 10.6 Conclusions.- Acknowledgements.- References.- 11 Robust Resilient Controller Design.- 11.1 Introduction.- 11.2 Robust Stability and Performance.- 11.3 Sufficient Conditions for Robust Stability and Performance.- 11.4 Multiplicative Controller Uncertainty Structure and Guaranteed Cost Bound.- 11.5 Decentralised Static Output Feedback Formulation.- 11.6 Sufficient Conditions for Fixed-order Resilient Compensation with Multiplicative Uncertainty.- 11.7 Additive Controller Uncertainty Structure and Guaranteed Cost Bound.- 11.8 Decentralised Static Output Feedback Formulation.- 11.9 Sufficient Conditions for Fixed-order Resilient Compensation with Additive Uncertainty.- 11.10 Quasi-Newton Optimisation Algorithm.-11.11 Illustrative Numerical Examples.- 11.12 Conclusion.- References.- 12 Robust Non-fragile Controller Design for Discrete Time Systems with FWL Consideration.- 12.1 Introduction.- 12.2 Problem Statement and Preliminaries.- 12.3 Robust Non-fragile H2 Control with Additive Controller Uncertainty.- 12.4 Robust Non-fragile H2 control with Multiplicative Controller Uncertainty.- 12.5 Example.- 12.6 Conclusion.- Acknowledgements.- References.- 13 Synthesis of Controllers with Finite-precision Considerations.- 13.1 Introduction.- 13.2 A Model for Finite-precision Controller Design.- 13.3 The Noise Model.- 13.4 Finite-precision Effects on Closed-loop Performance.- 13.5 Optimal Controller Coordinates.- 13.6 Optimal Controller Design.- 13.7 Skewed Sampling.- 13.8 A Numerical Example.- Acknowledgements.- References.- 14 Quantisation Errors in Digital Implementations of Fuzzy Controllers.- 14.1 Introduction.- 14.2 Fuzzy Systems.- 14.3 Sources of Quantisation Errors.- 14.4 Digitised FLCs.- 14.5 Consequences of the Digitisation in Feedback Fuzzy Systems.- 14.6 Conclusions.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.