Weng / Xia / Zhu | Substructuring Method for Civil Structural Health Monitoring | Buch | 978-981-99-1368-8 | www2.sack.de

Buch, Englisch, Band 15, 281 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 629 g

Reihe: Engineering Applications of Computational Methods

Weng / Xia / Zhu

Substructuring Method for Civil Structural Health Monitoring


1. Auflage 2023
ISBN: 978-981-99-1368-8
Verlag: Springer Nature Singapore

Buch, Englisch, Band 15, 281 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 629 g

Reihe: Engineering Applications of Computational Methods

ISBN: 978-981-99-1368-8
Verlag: Springer Nature Singapore


This book investigates the substructuring technology in structural health monitoring (SHM) to improve the accuracy and efficiency of the present SHM methods. SHM has been developed for monitoring, evaluation, and maintenance of civil structures. As the civil structures are usually large scale and a large number of sensors are deployed on a structure, accurate evaluation and maintenance of civil structures are always time-consuming. The book establishes a fundamental framework of substructuring method for the fast analysis of finite element (FE) model and monitoring data. Several practical civil structures are used for illustration. The book is intended for undergraduate and graduate students who are interested in SHM technology, researchers investigating the accurate, efficient, and effective methods in SHM field, and engineers working on evaluation and maintenance of civil structures or other structural dynamics applications.

Weng / Xia / Zhu Substructuring Method for Civil Structural Health Monitoring jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Acknowledgements

preface

Foreword 1

Foreword 2

Contents     iii

LIST OF SYMBOLS      iv

1 Introduction       10

1.1     The

objective of substructuring method in SHM     10

1.2     The

category of substructuring method         11

1.3     Organization

of the book 13

2 Substructuring method for eigensolutions  17

2.1 Preview 17

2.2 Basic methods for eigensolutions  19

2.2.1 Subspace Iteration method         19

2.2.2 Lanczos method     20

2.3 Substructuring method for eigensolutions         22

2.3.1 Component mode synthesis       24

2.3.2 Kron’s substructuring method    28

2.3.3 First-order residual flexibility based

substructuring method        32

2.3.4. Second-order residual flexibility based

substructuring method   35

2.3.5. Residual flexibility for free structure   37

2.4 Examples        40

2.4.1 Three-span Frame Structure       40

2.4.2 The Balla Balla River Bridge     47

2.5 Summery        56

2.6 References      57

3 Substructuring method for eigensensitivity 59

3.1 Preview 59

3.2 Basic methods for eigensensitivity 60

3.2.1 Eigenvalue derivatives     60

3.2.2 Eigenvector derivatives    61

3.3 Substructuring method for eigensensitivity       64

3.3.1 Eigenvalue Derivatives    64

3.3.2 Eigenvector Derivatives   66

3.4 Examples        69

3.4.1 The Three-span Frame Structure 69

3.4.2 The Balla Balla River Bridge     74

3.5 Summery        81

3.6 References      81

4 Substructuring method for high-order

eigensensitivity   83

4.1 Preview 83

4.2 Basic method for high-order eigensensitivity    83

4.2.1 Second-order eigensolution derivatives 83

4.2.2 General high-order Eigensolution Derivatives 85

4.3 Substructuring method for high-order

eigensensitivity 86

4.3.1 Second-order eigensolution derivatives 86

4.3.1 High-order eigensolution derivatives   93

4.4 Examples        95

4.5 Summery        99

4.6 Reference        99

5 Iterative bisection scanning substructuring (IBSS)

method for eigensolution and eigensensitivity     101

5.1 Preview 101

5.2 IBSS method for eigensolution     101

5.3 IBSS method for eigensensitivity  105

5.3.1 Eigenvalue derivatives     105

5.3.2 Eigenvector derivatives    107

5.4 Examples        109

5.4.1 A cantilever plate   109

5.4.1 The Guangzhou New Television Tower         114

5.5 Summary        123

5.6 References      123

6 Simultaneous iterative substructuring method for

eigensolutions and eigensensitivity     125

6.1 Preview 125

6.2 SIS method for eigensolution        126

6.3 SIS method for eigensensitivity    130

6.3.1 Eigenvalue derivative      130

6.3.2 Eigenvector derivative     133

6.4 Examples        135

6.4.1 A frame model       135

6.4.2 Wuhan Yangtze River Navigation Center      141

6.5 Summary        148

6.6 References      149

6 Substructuring method considering elastic effects of

slave modes in time domain 150

6.1 Preview 150

6.2 Basic method for time history dynamic response and

response sensitivity 151

6.3 Substructuring method for time history dynamic

response and response sensitivity      153

6.4 Examples        160

6.4.1 A three-bay frame  160

6.4.2 Wuhan Yangtze River Navigation Center      168

6.5 Summery        172

6.6 References      173

7 Substructuring method considering inertial effects

of slave modes in time domain 174

7.1 Preview 174

7.2 Substructuring method for time history dynamic

response and response sensitivity      174

7.3 Examples        180

7.3.1 A three-bay frame  180

7.3.2 Wuhan Yangtze River Navigation Center      184

7.4 Summery        187

7.5 References      187

8 Substructuring method to finite element model

updating         189

8.1 Preview 189

8.2 Fundamentals of sensitivity-based finite element

model updating using modal data     190

8.3 Fundamentals of sensitivity-based finite element

model updating using time history data          191

8.4 Finite element model updating by

substructure-based modal data   192

8.5 Finite element model updating by

substructure-based time history data    193

8.6 Examples        194

8.6.1 The Balla Balla Bridge     194

8.6.2 Wuhan Yangtze River Navigation Center      201

8.7 Summery        206

8.8 References      207

10 Dynamic condensation to the calculation of

eigensolutions and eigensensitivities         209

10.1 Preview         209

10.2 Static condensation approach      211

10.3 IOR method for eigensolutions   214

10.4 IOR method for eigensensitivity 217

10.4.1 Eigenvalue derivatives   217

10.4.2 Eigenvector derivatives  222

10.5 Examples      225

10.5.1 GARTEUR frame 225

10.5.2 A cantilever plate 232

10.6 Summary      235

10.7 References    236

11 Dynamic condensation to the calculation of

structural responses and response sensitivities          238

11.1 Preview         238

11.2 IOR method for structural responses     238

11.3 IOR method for response sensitivities   242

11.4 Examples      243

11.4.1 A three-span frame        243

11.4.2 A cantilever plate 253

11.5 Summary      259

11.6 References    259

12 Dynamic condensation approach to finite element

model updating  261

12.1 Preview         261

12.2 Finite element model updating using dynamic

condensation-based modal data 261

12.3 Finite element model updating using dynamic condensation-based

time history data 266

12.4 Examples      269

12.4.1 Junshan Yangtze River Bridge 269

12.4.2 Jiangyin Yangtze River Bridge 272

12.5 Summary      276

12.6 References    277

13 Substructuring method for responses and response

sensitivities of nonlinear systems    278

13.1 Preview         278

13.2 Substructuring method for structural responses of

nonlinear systems     279

13.3 Substructuring method for response sensitivities

of nonlinear systems   288

13.4 Examples      293

13.4.1 A nonlinear spring-mass system        293

13.4.2 A nonlinear frame model 303


13.5 Summary      311

13.6 References    312

14 Model updating of nonlinear structures using

substructuring method        314

14.1 Preview         314

14.2 Procedure of the substructure-based nonlinear

model updating method  315

14.3 Example: a nonlinear frame        318

14.3.1 Model updating without measurement noises        319

14.3.2 Model updating with measurement noises    329

14.4 Summary      331

14.5 References    332

15 A modal derivative enhanced Kron’s substructuring

method for response and response sensitivities of geometrically nonlinear

systems     333

15.1 Preview         333

15.2 Substructuring method for responses of

geometrically nonlinear systems         334

15.3 Substructuring method for response sensitivities

of geometrically nonlinear systems 343

15.4 Computational operation   348

15.5 Example: a hinged plate model   354

15.6 Summary      362

15.7 References    363

16 Challenges and Prospects


Prof. Shun Weng received his B.E. and M.E. degrees in Civil Engineering from Huazhong University of Science and Technology (HUST), Wuhan, China, in 2004 and 2007, respectively, and the Ph.D. degree in Structural Engineering from The Hong Kong Polytechnic University (HKPolyU) in 2010. She joined in School of Civil and Hydraulic Engineering at HUST in 2011 and has been working as a professor since 2018.

Prof. Weng focuses on the research of structural health monitoring. Her research interests include computational method in structural dynamics, structural damage identification and assessment, SHM system, etc. Prof. Weng is awarded the National Science Fund for Outstanding Young Scholars, The Hubei Science Fund for Distinguished Young Scholars, Stan Shaw Award: Best Young Researcher Award, Chutian Scholar of Hubei Province. She is awarded the second prize of National Technology Invention Awards in 2018 and the first prize of Science and Technology Progress Awards of Hubei Province in 2014. Prof. Weng has published two books, more than 60 SCI papers, 17 patents, and six standards. She served as the associate editor of "The Monitor" and editor of several international journals. She is the member of international committee of Structural Health Monitoring of Intelligent Infrastructure (SHMII), and the China Civil Engineering Society, China Vibration Engineering Society and China Highway and Transportation Society.

Prof. Hongping Zhu received his B.E., M.E., and Ph.D. degrees in Civil Engineering from HUST. Prof. Zhu was the dean of School of Civil and Hydraulic Engineering at HUST and the director of Hubei Provincial Key Laboratory of Control Structure.

Prof. Zhu focuses on the research of structural health monitoring and vibration control. His research interests include structural dynamics, structural damage identification and assessment, seismic isolation and vibration control, etc. Prof. Zhu is awarded the National Science Fund for Distinguished Young Scholars and The Changjiang Scholars. He is awarded the second prize of National Technology Invention Awards in 2018, four times of first prize of Science and Technology Progress Awards of Hubei Province, and the first prize of Natural Science Awards of Hubei Province. Prof. Zhu has published four books and more than 200 SCI papers. He is the member of ASCE and SHMII, and several Chinese professional societies. He is the editor in chief of Journal of civil engineering and management, and the editor of several international journals.

Prof. Yong Xia received his B.E. and M.E. degrees in Civil Engineering from HUST, and the Ph.D. degree in Structural Engineering from Nanyang Technological University in Singapore. Prof. Xia is the associate head of Department of Civil and Environmental Engineering in The Hong Kong Polytechnic University (HKPolyU).

Prof. Xia focuses on the research of structural health monitoring. His research interests include Structural Health Monitoring, Structural Damage Identification, Finite Element Model Updating, Nonlinear Vibration of Cables, etc. He has researched on the SHM system of Tsing Ma Bridge in Hong Kong and Guangzhou Tower. Prof. Xia is awarded the Distinguished Young Scholars for Overseas of NSFC, Chang Jiang Scholars. He is awarded the second prize of National Technology Invention Awards in 2018 and the first prize of Natural Science Award of Ministry of Education. Prof. Xia has published seven books and standards, and more than 130 SCI papers. He served as the editor in chief of journal "Advances in Structural Engineering" and "The Monitor" and editor of several international journals. He is the member of ASCE and SHMII, and several Chinese professional societies.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.