Buch, Englisch, Band 15, 281 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 629 g
Buch, Englisch, Band 15, 281 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 629 g
Reihe: Engineering Applications of Computational Methods
ISBN: 978-981-99-1368-8
Verlag: Springer Nature Singapore
This book investigates the substructuring technology in structural health monitoring (SHM) to improve the accuracy and efficiency of the present SHM methods. SHM has been developed for monitoring, evaluation, and maintenance of civil structures. As the civil structures are usually large scale and a large number of sensors are deployed on a structure, accurate evaluation and maintenance of civil structures are always time-consuming. The book establishes a fundamental framework of substructuring method for the fast analysis of finite element (FE) model and monitoring data. Several practical civil structures are used for illustration. The book is intended for undergraduate and graduate students who are interested in SHM technology, researchers investigating the accurate, efficient, and effective methods in SHM field, and engineers working on evaluation and maintenance of civil structures or other structural dynamics applications.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Bauingenieurwesen Gebäudebrandschutz
- Technische Wissenschaften Bauingenieurwesen Bauingenieurwesen
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Bauingenieurwesen Gebäudemanagement, Gebäudeschäden
Weitere Infos & Material
Acknowledgements
preface
Foreword 1
Foreword 2
Contents iii
LIST OF SYMBOLS iv
1 Introduction 10
1.1 The
objective of substructuring method in SHM 10
1.2 The
category of substructuring method 11
1.3 Organization
of the book 13
2 Substructuring method for eigensolutions 17
2.1 Preview 17
2.2 Basic methods for eigensolutions 19
2.2.1 Subspace Iteration method 19
2.2.2 Lanczos method 20
2.3 Substructuring method for eigensolutions 22
2.3.1 Component mode synthesis 24
2.3.2 Kron’s substructuring method 28
2.3.3 First-order residual flexibility based
substructuring method 32
2.3.4. Second-order residual flexibility based
substructuring method 35
2.3.5. Residual flexibility for free structure 37
2.4 Examples 40
2.4.1 Three-span Frame Structure 40
2.4.2 The Balla Balla River Bridge 47
2.5 Summery 56
2.6 References 57
3 Substructuring method for eigensensitivity 59
3.1 Preview 59
3.2 Basic methods for eigensensitivity 60
3.2.1 Eigenvalue derivatives 60
3.2.2 Eigenvector derivatives 61
3.3 Substructuring method for eigensensitivity 64
3.3.1 Eigenvalue Derivatives 64
3.3.2 Eigenvector Derivatives 66
3.4 Examples 69
3.4.1 The Three-span Frame Structure 69
3.4.2 The Balla Balla River Bridge 74
3.5 Summery 81
3.6 References 81
4 Substructuring method for high-order
eigensensitivity 83
4.1 Preview 83
4.2 Basic method for high-order eigensensitivity 83
4.2.1 Second-order eigensolution derivatives 83
4.2.2 General high-order Eigensolution Derivatives 85
4.3 Substructuring method for high-order
eigensensitivity 86
4.3.1 Second-order eigensolution derivatives 86
4.3.1 High-order eigensolution derivatives 93
4.4 Examples 95
4.5 Summery 99
4.6 Reference 99
5 Iterative bisection scanning substructuring (IBSS)
method for eigensolution and eigensensitivity 101
5.1 Preview 101
5.2 IBSS method for eigensolution 101
5.3 IBSS method for eigensensitivity 105
5.3.1 Eigenvalue derivatives 105
5.3.2 Eigenvector derivatives 107
5.4 Examples 109
5.4.1 A cantilever plate 109
5.4.1 The Guangzhou New Television Tower 114
5.5 Summary 123
5.6 References 123
6 Simultaneous iterative substructuring method for
eigensolutions and eigensensitivity 125
6.1 Preview 125
6.2 SIS method for eigensolution 126
6.3 SIS method for eigensensitivity 130
6.3.1 Eigenvalue derivative 130
6.3.2 Eigenvector derivative 133
6.4 Examples 135
6.4.1 A frame model 135
6.4.2 Wuhan Yangtze River Navigation Center 141
6.5 Summary 148
6.6 References 149
6 Substructuring method considering elastic effects of
slave modes in time domain 150
6.1 Preview 150
6.2 Basic method for time history dynamic response and
response sensitivity 151
6.3 Substructuring method for time history dynamic
response and response sensitivity 153
6.4 Examples 160
6.4.1 A three-bay frame 160
6.4.2 Wuhan Yangtze River Navigation Center 168
6.5 Summery 172
6.6 References 173
7 Substructuring method considering inertial effects
of slave modes in time domain 174
7.1 Preview 174
7.2 Substructuring method for time history dynamic
response and response sensitivity 174
7.3 Examples 180
7.3.1 A three-bay frame 180
7.3.2 Wuhan Yangtze River Navigation Center 184
7.4 Summery 187
7.5 References 187
8 Substructuring method to finite element model
updating 189
8.1 Preview 189
8.2 Fundamentals of sensitivity-based finite element
model updating using modal data 190
8.3 Fundamentals of sensitivity-based finite element
model updating using time history data 191
8.4 Finite element model updating by
substructure-based modal data 192
8.5 Finite element model updating by
substructure-based time history data 193
8.6 Examples 194
8.6.1 The Balla Balla Bridge 194
8.6.2 Wuhan Yangtze River Navigation Center 201
8.7 Summery 206
8.8 References 207
10 Dynamic condensation to the calculation of
eigensolutions and eigensensitivities 209
10.1 Preview 209
10.2 Static condensation approach 211
10.3 IOR method for eigensolutions 214
10.4 IOR method for eigensensitivity 217
10.4.1 Eigenvalue derivatives 217
10.4.2 Eigenvector derivatives 222
10.5 Examples 225
10.5.1 GARTEUR frame 225
10.5.2 A cantilever plate 232
10.6 Summary 235
10.7 References 236
11 Dynamic condensation to the calculation of
structural responses and response sensitivities 238
11.1 Preview 238
11.2 IOR method for structural responses 238
11.3 IOR method for response sensitivities 242
11.4 Examples 243
11.4.1 A three-span frame 243
11.4.2 A cantilever plate 253
11.5 Summary 259
11.6 References 259
12 Dynamic condensation approach to finite element
model updating 261
12.1 Preview 261
12.2 Finite element model updating using dynamic
condensation-based modal data 261
12.3 Finite element model updating using dynamic condensation-based
time history data 266
12.4 Examples 269
12.4.1 Junshan Yangtze River Bridge 269
12.4.2 Jiangyin Yangtze River Bridge 272
12.5 Summary 276
12.6 References 277
13 Substructuring method for responses and response
sensitivities of nonlinear systems 278
13.1 Preview 278
13.2 Substructuring method for structural responses of
nonlinear systems 279
13.3 Substructuring method for response sensitivities
of nonlinear systems 288
13.4 Examples 293
13.4.1 A nonlinear spring-mass system 293
13.4.2 A nonlinear frame model 303
13.5 Summary 311
13.6 References 312
14 Model updating of nonlinear structures using
substructuring method 314
14.1 Preview 314
14.2 Procedure of the substructure-based nonlinear
model updating method 315
14.3 Example: a nonlinear frame 318
14.3.1 Model updating without measurement noises 319
14.3.2 Model updating with measurement noises 329
14.4 Summary 331
14.5 References 332
15 A modal derivative enhanced Kron’s substructuring
method for response and response sensitivities of geometrically nonlinear
systems 333
15.1 Preview 333
15.2 Substructuring method for responses of
geometrically nonlinear systems 334
15.3 Substructuring method for response sensitivities
of geometrically nonlinear systems 343
15.4 Computational operation 348
15.5 Example: a hinged plate model 354
15.6 Summary 362
15.7 References 363
16 Challenges and Prospects




