Weidmann | Lineare Operatoren in Hilberträumen | E-Book | sack.de
E-Book

E-Book, Deutsch, 404 Seiten, eBook

Reihe: Mathematische Leitfäden

Weidmann Lineare Operatoren in Hilberträumen

Teil II: Anwendungen
2003
ISBN: 978-3-322-80095-4
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

Teil II: Anwendungen

E-Book, Deutsch, 404 Seiten, eBook

Reihe: Mathematische Leitfäden

ISBN: 978-3-322-80095-4
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Weidmann Lineare Operatoren in Hilberträumen jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Symbolverzeichnis.- 12 Spektrale Teilräume eines selbstadjungierten Operators.- 12.1 Abstrakte Definition der spektralen Teilräume.- 12.2 Dynamische Charakterisierung der spektralen Teilräume.- 12.3 Zur Voraussetzung des RAGE-Theorems.- 13 Sturm-Liouville-Operatoren; Selbstadjungiertheit.- 13.1 Voraussetzungen; minimaler und maximaler Operator.- 13.2 Selbstadjungierte Realisierungen im regulären Fall.- 13.3 Die Weylsche Alternative; Selbstadjungierte Realisierungen im allgemeinen Fall.- 13.4 Grenzpunkt-Grenzkreisfall-Kriterien.- 13.5 Übungen.- 14 Sturm-Liouville-Operatoren; Spektraltheorie.- 14.1 Spektraldarstellung von Sturm-Liouville-Operatoren.- 14.2 Variation der Randbedingung.- 14.3 Approximation durch reguläre Probleme.- 14.4 Die Technik der Prüfertransformation.- 14.5 Absolut stetiges Spektrum.- 14.6 Übungen.- 15 Dirac-Systeme.- 15.1 Minimaler und maximaler Operator.- 15.2 Selbstadjungierte Realisierungen im regulären Fall.- 15.3 Die Weylsche Alternative; Selbstadjungierte Realisierungen im allgemeinen Fall.- 15.4 Grenzpunkt-Grenzkreisfall-Kriterien.- 15.5 Spektraldarstellung von Diracsystemen.- 15.6 Prüfertransformation für Diracsysteme.- 15.7 Absolut stetiges Spektrum.- 16 Periodische Sturm-Liouville-Operatoren und Dirac-Systeme.- 16.1 Diskriminante, Stabilitätsintervalle und Spektrum.- 16.2 Methode der direkten Integrale.- 17 Ein-Teilchen-Schrödingeroperatoren.- 17.1 Vorbemerkungen.- 17.2 Schrödingeroperatoren mit (-?)-kleinen Wechselwirkungen.- 17.3 Eigenwerte von Schrödingeroperatoren.- 17.4 Einfachheit des Grundzustandes.- 17.5 Schrödingeroperatoren mit „großen“ Wechselwirkungen.- 17.6 Übungen.- 18 Separation der Variablen und Kugelflächenfunktionen.- 18.1 Zwei Separationsansätze.- 18.2 Kugelflächenfunktionen.- 18.3 Sphärischsymmetrische Schrödingeroperatoren.- 18.4 Übungen.- 19 Spektraltheorie von N-Teilchen-Schrödingeroperatoren.- 19.1 N-Teilchen-Operatoren.- 19.2 N-Teilchen-Systeme im äußeren Feld; Separation der Schwerpunktsbewegung.- 19.3 Die untere Grenze des wesentlichen Spektrums.- 19.4 Das wesentliche Spektrum von N-Teilchen-Schrödingeroperatoren.- 20 Diracoperatoren.- 20.1 Der freie Diracoperator.- 20.2 Diracoperatoren mit elektrischem Feld.- 20.3 Reduktion sphärisch symmetrischer Operatoren auf Dirac-Systeme.- 21 Grundbegriffe der Streutheorie.- 21.1 Vorbemerkungen.- 21.2 Die Wellenoperatoren.- 21.3 Streuoperator und Streumatrix.- 21.4 Übungen.- 22 Existenz der Wellenoperatoren.- 22.1 Das Cooksche Lemma.- 22.2 Existenz von W±(T2, Tl) für Differentialoperatoren Tl.- 22.3 Spurklassenmethode; der Satz von Pearson.- 22.4 Folgerungen aus dem Satz von Pearson.- 23 Ein eindimensionales Streuproblem.- 23.1 Spektraldarstellungen und Streumatrix.- 23.2 Konstruktion der Spektraldarstellung von T2.- 23.3 Die Streumatrix für ein explizit lösbares Problem.- 24 Existenz und Vollständigkeit der Wellenoperatoren nach V. Enß.- 24.1 Eigenschaften von Enß-Störungen und die Existenz der Wellenoperatoren.- 24.2 Exkurs über die Dilatationsgruppe und ihren Generator.- 24.3 Ein- und auslaufende Zustände; der Zerlegungssatz.- 24.4 Abschluß des Beweises des Satzes von Enß.- 25 Prinzipien der Mehrkanalstreuung.- 25.1 Vorüberlegungen.- 25.2 N-Teilchen-Streuung ohne äußeres Feld.- 25.3 N-Teilchen-Streuung im äußeren Feld.- Literatur.


Prof. Dr. Joachim Weidmann, Universität Frankfurt



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.