Wehrung / Grätzer | Lattice Theory: Special Topics and Applications | Buch | 978-3-319-06412-3 | www2.sack.de

Buch, Englisch, 468 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 804 g

Wehrung / Grätzer

Lattice Theory: Special Topics and Applications

Volume 1
2014
ISBN: 978-3-319-06412-3
Verlag: Springer International Publishing

Volume 1

Buch, Englisch, 468 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 804 g

ISBN: 978-3-319-06412-3
Verlag: Springer International Publishing


George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Grätzer.
Wehrung / Grätzer Lattice Theory: Special Topics and Applications jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Introduction. Part I Topology and Lattices.- Chapter 1. Continuous and Completely Distributive Lattices.- Chapter 2. Frames: Topology Without Points.- Part II. Special Classes of Finite Lattices.- Chapter 3. Planar Semi modular Lattices: Structure and Diagram.- Chapter 4. Planar Semi modular Lattices: Congruences.- Chapter 5. Sectionally Complemented Lattices.- Chapter 6. Combinatorics in finite lattices.- Part III. Congruence Lattices of Infinite Lattices and Beyond.- Chapter 7. Schmidt and Pudlák's Approaches to CLP.- Chapter 8. Congruences of lattices and ideals of rings.- Chapter 9. Liftable and Unliftable Diagrams.- Chapter 10. Two topics related to congruence lattices of lattices.


George Grätzer, Member of the Canadian Academy of Sciences and Foreign Member of the Hungarian Academy of Sciences, is the author of 26 books in five languages and about 260 articles, most of them on his research in lattice theory.

Friedrich Wehrung is professor at the University of Caen and an associate editor for Algebra Universalis, a mathematical journal devoted to universal algebra and lattice theory. He is the author of numerous publications in the field and wrote an appendix to the second edition of Grätzer's General Lattice Theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.