Buch, Englisch, Band 29, 463 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g
Buch, Englisch, Band 29, 463 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g
Reihe: Outstanding Contributions to Logic
ISBN: 978-3-031-50983-4
Verlag: Springer Nature Switzerland
The chapters of which this book is composed discuss the subject from a rich variety of angles, including the history of logic, the proper interpretation of logical validity, natural deduction rules, the notions of harmony and of synonymy, the structure of proofs, the logical status of equality, intentional phenomena, and the proof theory of second-order arithmetic. All chapters relate directly to questions that have driven Schroeder-Heister's own research agendaand to which he has made seminal contributions. The extensive autobiographical chapter not only provides a fascinating overview of Schroeder-Heister's career and the evolution of his academic interests but also constitutes a contribution to the recent history of logic in its own right, painting an intriguing picture of the philosophical, logical, and mathematical institutional landscape in Germany and elsewhere since the early 1970s. The papers collected in this book are illuminatingly put into a unified perspective by Schroeder-Heister's comments at the end of the book. Both graduate students and established researchers in the field will find this book an excellent resource for future work in proof-theoretic semantics and related areas.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
- Geisteswissenschaften Philosophie Philosophie: Allgemeines, Methoden
- Geisteswissenschaften Sprachwissenschaft Sprachwissenschaften
- Geisteswissenschaften Philosophie Sprachphilosophie
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
Weitere Infos & Material
Chapter 1. Proof-theoretic semantics: An autobiographical survey (Peter Schroeder-Heister).- Chapter 2. Grundlagen der Arithmetik, §17: Part 1. Frege’s anticipation of the deduction theorem (Göran Sundholm).- Chapter 3. Frege’s class theory and the logic of sets (Neil Tennant).- Chapter 4. The validity of inference and argument (Dag Prawitz).- Chapter 5. Kolmogorov and the general theory of problems (Wagner de Campos Sanz).- Chapter 6. Disjunctive syllogism without Ex falso (Luiz Carlos Pereira, Edward Hermann Haeusler and Victor Nascimento).- Chapter 7. The logicality of equality (Andrzej Indrzejczak).- Chapter 8. Eight rules for implication elimination (Michael Arndt).- Chapter 9. Focusing Gentzen’s LK proof system (Chuck Liang and Dale Miller).- Chapter 10. Intensional harmony as Isomorphism (Paolo Pistone and Luca Tranchini).- Chapter 11. A note on synonymy in proof-theoretic semantics (Heinrich Wansing).- Chapter 12. Paradoxes, intuitionism, and proof-theoretic semantics(Reinhard Kahle and Paulo Guilherme Santos).- Chapter 13. On the structure of proofs (Lars Hallnäs).- Chapter 14. Truth-value constants in multi-valued logics (Nissim Francez and Michael Kaminski).- Chapter 15. Counterfactual assumptions and counterfactual implications (Bartosz Wieckowski).- Chapter 16. Some set-theoretic reduction principles (Michael Bärtschi and Gerhard Jäger).- Chapter 17. Comments on the contributions (Peter Schroeder-Heister).