Buch, Englisch, 337 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 585 g
Buch, Englisch, 337 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 585 g
ISBN: 978-1-108-99500-9
Verlag: Cambridge University Press
Logical paradoxes – like the Liar, Russell's, and the Sorites – are notorious. But in Paradoxes and Inconsistent Mathematics, it is argued that they are only the noisiest of many. Contradictions arise in the everyday, from the smallest points to the widest boundaries. In this book, Zach Weber uses “dialetheic paraconsistency” – a formal framework where some contradictions can be true without absurdity – as the basis for developing this idea rigorously, from mathematical foundations up. In doing so, Weber directly addresses a longstanding open question: how much standard mathematics can paraconsistency capture? The guiding focus is on a more basic question, of why there are paradoxes. Details underscore a simple philosophical claim: that paradoxes are found in the ordinary, and that is what makes them so extraordinary.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
Weitere Infos & Material
Part I. What are the Paradoxes?: Introduction to an inconsistent world; 1. Paradoxes; or, 'here in the presence of an absurdity'; Part II. How to Face the Paradoxes?: 2. In search of a uniform solution; 3. Metatheory and naive theory; 4. Prolegomena to any future inconsistent mathematics. Part III. Where are the Paradoxes?: 5. Set theory; 6. Arithmetic; 7. Algebra; 8. Real analysis; 9. Topology. Part IV. Why Are there Paradoxes?: 10. Ordinary paradox.