Webb | Annual Reports on NMR Spectroscopy | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 83, 376 Seiten

Reihe: Annual Reports on NMR Spectroscopy

Webb Annual Reports on NMR Spectroscopy


1. Auflage 2014
ISBN: 978-0-12-800327-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band Volume 83, 376 Seiten

Reihe: Annual Reports on NMR Spectroscopy

ISBN: 978-0-12-800327-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy. - This volume of Annual Reports on NMR Spectroscopy focuses on the analytical tools used by chemists and physicists, taken together with other volumes of this series, an excellent account of progress in NMR and its many applications is provided and anyone using NMR will find interest in this Serial

Webb Annual Reports on NMR Spectroscopy jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Annual Reports on NMR Spectroscopy;4
3;Copyright;5
4;Contents;6
5;Contributors;8
6;Preface;10
7;Chapter One: Dynamic Pictures of Proteins by NMR;12
7.1;1. Introduction;13
7.2;2. Pico- to Nanosecond Motions;15
7.2.1;2.1. Generalized Order Parameters from the Relaxation Parameters [8-10,30-33];16
7.2.2;2.2. Moiety of Membrane Proteins Protruding from Membrane Surfaces;20
7.3;3. Micro- to Milliseconds Motions: Solution NMR;22
7.3.1;3.1. CPMG R2 Relaxation Rate Dispersion;23
7.3.2;3.2. R1. Relaxation Rate Dispersion;27
7.3.3;3.3. Differential ZQC/DQC Decay Rates;30
7.3.4;3.4. ZZ-Exchange;30
7.3.5;3.5. Residual Dipolar Couplings;31
7.4;4. Micro- to Millisecond Motions: Solid State NMR;35
7.4.1;4.1. Dynamic Interference: SRI;35
7.4.2;4.2. CODEX and Chemical Exchange;38
7.4.3;4.3. Order Parameters Based on DCs;40
7.4.4;4.4. Relaxation Rate parameters: R1, R2, and R1.;41
7.4.5;4.5. Lineshape Analysis;45
7.5;5. Very Slow Motions: 1D MAS Exchange;46
7.6;6. Globular Proteins;48
7.6.1;6.1. Comparison of Protein Dynamics Between Solution and Solid;48
7.6.2;6.2. Pico- to Nanosecond motions: Conformational Entropy and Allostery;48
7.6.3;6.3. ms-µs Motions: Biological Function;51
7.6.3.1;6.3.1. Protein Folding;51
7.6.3.2;6.3.2. Catalysis and Allosteric Regulation;52
7.7;7. Membrane Proteins;54
7.7.1;7.1. Retinal Proteins;54
7.7.1.1;7.1.1. Bacteriorhodopsin (bR);54
7.7.1.2;7.1.2. Sensory Rhodopsin and Proteorhodopsin;58
7.7.2;7.2. Other Proteins;60
7.8;8. Conclusion;61
7.9;Acknowledgements;62
7.10;References;62
8;Chapter Two: Recent Progress in the Solid-State NMR Studies of Short Peptides: Techniques, Structure and Dynamics;78
8.1;1. Introduction;79
8.2;2. Development of the New Solid-State NMR Techniques Useful in Structural Studies of Peptides;81
8.2.1;2.1. 1H Solid-State NMR;81
8.2.2;2.2. 13C and 15N Sensitivity under Fast and Medium Magic-Angle Spinning;83
8.2.3;2.3. Two-Dimensional Correlations under F-MAS;89
8.2.3.1;2.3.1. 1H-13C and 1H-15N HETCOR Correlations;89
8.2.3.2;2.3.2. 13C-13C and 15N-15N HOMCOR Correlations;91
8.2.4;2.4. Quadrupolar Nuclei;93
8.3;3. Molecular Dynamics of Peptides in the Solid State;94
8.3.1;3.1. Probing the Dynamics in Different Time Scales;95
8.3.2;3.2. Tools for Analysis of the Local Molecular Motions of Peptides in the Solid State;98
8.3.2.1;3.2.1. Relaxation Times;98
8.3.2.2;3.2.2. Chemical Shift Anisotropy;102
8.3.2.3;3.2.3. Investigation of the Dynamics by Deuterium Solid-State NMR: Line-Shape Analysis;106
8.3.2.4;3.2.4. Heteronuclear Dipolar Recoupling Sequences;112
8.4;4. Polymorphism and Solvatomorphism of Peptides;116
8.4.1;4.1. Solid-State NMR Study of Polymorphs and Solvatomorphs;117
8.4.1.1;4.1.1. Ala-Ala-Ala Tripeptide-The Case Study;122
8.5;5. Complementarity of Theoretical and NMR Methods in Assignment of the Solid-State Structure of Peptides;126
8.5.1;5.1. Techniques Used for Calculations of NMR Parameters in the Solid State;129
8.5.2;5.2. Theoretical Methods as a Tool for Structure Assignment of Peptides in the Solid State;130
8.5.3;5.3. Fine Refinement of Peptide Crystals with Molecular Disorder;135
8.5.4;5.4. Theoretical Methods Versus Molecular Motion;140
8.6;6. Concluding Remarks;142
8.7;Acknowledgement;143
8.8;References;143
9;Chapter Three: Solid-State 17O NMR Studies of Biomolecules;156
9.1;1. Introduction;157
9.2;2. NMR Tensor Parameters;160
9.3;3. NMR Methodologies;163
9.3.1;3.1. Site-Specific Spectral Resolution;164
9.3.1.1;3.1.1. Single-Crystal NMR;164
9.3.1.2;3.1.2. Magic-Angle Spinning;165
9.3.1.3;3.1.3. MQMAS and STMAS;166
9.3.1.4;3.1.4. Dynamic Angle Spinning and Double Rotation;168
9.3.2;3.2. Detection Sensitivity Enhancement;169
9.3.2.1;3.2.1. Isotopic Enrichment and High Magnetic Field;169
9.3.2.2;3.2.2. Spin Population Transfer Experiments;170
9.3.2.3;3.2.3. Dynamic Nuclear Polarization;171
9.3.2.4;3.2.4. Cryo-MAS;172
9.3.2.5;3.2.5. Cross-polarization;173
9.3.3;3.3. Correlation NMR Experiments;174
9.3.4;3.4. Quantum Chemical Calculations;178
9.3.4.1;3.4.1. Molecular Cluster Model;179
9.3.4.2;3.4.2. Periodic Crystal Lattice;180
9.3.5;3.5. Basic NMR Experimental Considerations;180
9.3.6;3.6. General Schemes for Determining the Tensor Parameters;182
9.3.6.1;3.6.1. Single Oxygen;183
9.3.6.2;3.6.2. Multiple Oxygens;183
9.4;4. 17O NMR Studies of Biomolecules;186
9.4.1;4.1. Proteins;189
9.4.1.1;4.1.1. Amino Acids;189
9.4.1.2;4.1.2. Peptides;191
9.4.1.3;4.1.3. Proteins;195
9.4.2;4.2. Nucleic Acids;197
9.4.3;4.3. Carbohydrates;198
9.4.4;4.4. Recent Progress on Organic Molecules of Biological Relevance;201
9.4.4.1;4.4.1. Carboxylic Acids and Carboxylates;201
9.4.4.2;4.4.2. C-Nitroso Compounds;204
9.4.4.3;4.4.3. Keto Acids;204
9.4.4.4;4.4.4. Sulfonic Acids;205
9.5;5. Concluding Remarks;206
9.6;Acknowledgements;207
9.7;Appendix;208
9.8;References;224
10;Chapter Four: Solid-State Nuclear Magnetic Resonance in Pharmaceutical Compounds;232
10.1;1. Introduction;233
10.2;2. SSNMR Techniques;236
10.2.1;2.1. 1D High-Resolution SSNMR Experiments;236
10.2.1.1;2.1.1. Diluted Spins;236
10.2.1.2;2.1.2. High-Resolution 1H NMR MAS;238
10.2.2;2.2. 2D SSNMR Experiments;240
10.2.3;2.3. First Principles Calculations;241
10.2.4;2.4. Relaxation Time Measurements;241
10.2.5;2.5. Multinuclear SSNMR;242
10.3;3. SSNMR of Pharmaceutical Compounds;243
10.3.1;3.1. API Characterization;243
10.3.2;3.2. Polymorphism;248
10.3.3;3.3. Pharmaceutical Complexes with Cyclodextrins;257
10.3.4;3.4. Salts and Cocrystals;261
10.3.5;3.5. NMR Crystallography;267
10.3.6;3.6. Tablet Characterization;270
10.4;4. Conclusions;271
10.5;5. Table of Compounds;271
10.6;Acknowledgements;273
10.7;References;273
11;Chapter Five: Covariance NMR and Small Molecule Applications;282
11.1;1. Introduction;283
11.2;2. On the Theory of Covariance NMR;284
11.2.1;2.1. The General Description;284
11.2.2;2.2. Types of Covariance Transformations in NMR;289
11.2.2.1;2.2.1. The Classification of Covariance NMR;289
11.2.2.2;2.2.2. Some Aspects of the Workings of 4D NMR;291
11.2.2.3;2.2.3. Matrix Regularization in Covariance NMR;292
11.2.2.4;2.2.4. The Transition from Indirect to Unsymmetrical Indirect Covariance;292
11.2.2.5;2.2.5. The Workings of Generalized Indirect Covariance NMR;293
11.2.3;2.3. Examples of Covariance Transformations;295
11.2.4;2.4. Artefacts in Covariance NMR Spectra;300
11.2.5;2.5. The Determination of the Non-Linear Signal-to-Noise Ratio;301
11.2.6;2.6. Asynchronous Spectra-The Neglected Imaginary Part;302
11.2.6.1;2.6.1. General Aspects of Asynchronous Spectra;302
11.2.6.2;2.6.2. Applications of Asynchronous Spectra;304
11.2.7;2.7. Heterospectroscopy;305
11.3;3. Software for Covariance NMR Processing;307
11.4;4. Covariance and NUS-The Combination of Two Approaches to Fast Methods;311
11.5;5. Applications of Covariance NMR to Small Molecules;317
11.5.1;5.1. Direct Covariance;317
11.5.1.1;5.1.1. Solution State;317
11.5.1.2;5.1.2. Solid State;320
11.5.2;5.2. Indirect Covariance;321
11.5.2.1;5.2.1. Solution State;321
11.5.2.2;5.2.2. Solid State;327
11.5.3;5.3. Unsymmetrical and Generalized Indirect Covariance;329
11.5.4;5.4. Multidimensional Covariance;344
11.5.4.1;5.4.1. Triple Rank;344
11.5.4.2;5.4.2. 4D NMR;345
11.5.5;5.5. Synchronous and Asynchronous Spectra;346
11.5.6;5.6. Statistical Analysis of NMR Spectra in the Field of Metabolomics;347
11.5.7;5.7. Other Covariance Applications in NMR Spectroscopy;349
11.6;6. Conclusion;351
11.7;Acknowledgements;352
11.8;References;352
12;Index;362


References


[1] Gurd FRN, Rothgeb TM. Motions in protein. Adv. Protein Chem. 1979;33:73–165.

[2] Creighton TE. Proteins. Structures and Molecular Properties. second ed. New York, NY: W. H. Freeman and Company; 1993.

[3] Abragam A. The Principles of Nuclear Magnetism. Oxford: Claredon Press; 1961.

[4] Ernst RR, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press; 1987.

[5] Evans JNS. Biomolecular NMR Spectroscopy. Oxford: Oxford University Press; 1995.

[6] Becker ED. High Resolution NMR, Theory and Chemical Applications. third ed. San Diego, CA: Academic Press; 2000.

[7] Slichter CP. Principles of Magnetic Resonance. third enlarged and updated ed. Berlin: Springer Verlag; 1989.

[8] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 1982;104:4546–4559.

[9] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 1982;104:4559–4570.

[10] Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 1990;112:4989–4991.

[11] Palmer III AG. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 1997;7:732–737.

[12] Palmer III AG, Kroenke CD, Loria JP. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 2001;339:204–238.

[13] Akke M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol. 2002;12:642–647.

[14] Palmer III AG. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 2004;104:3623–3640.

[15] Palmer III AG, Grey MJ, Wang C. Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Methods Enzymol. 2005;394:430–465.

[16] Boehr DD, Dyson HJ, Wright PE. An NMR perspective on enzyme dynamics. Chem. Rev. 2006;106:3055–3079.

[17] Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta. 2011;1814:942–968.

[18] Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 1954;94:630–638.

[19] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958;29:688–691.

[20] Deverell C, Morgan RE, Strange JH. Studies of chemical exchange by nuclear magnetic relaxation in the rotating frame. Mol. Phys. 1970;18:553–559.

[21] Saitô H, Tuzi S, Tanio M, Naito A. Dynamic aspect of membrane proteins and membrane associated peptides as revealed by 13C NMR: lessons from bacteriorhodopsin as an intact protein. Annu. Rep. NMR Spectrosc. 2002;47:39–108.

[22] Saitô H, Mikami J, Yamaguchi S, Tanio M, Kira A, Arakawa T, Yamamoto K, Tuzi S. Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals toward revealing conformation and dynamics as illustrated for 13C-labeled bacteriorhodopsin. Magn. Reson. Chem. 2004;42:218–230.

[23] Saitô H. Site-directed solid-state NMR on membrane proteins. Annu. Rep. NMR Spectrosc. 2006;57:100–171.

[24] Saitô H, Ando I, Naito A. Solid State NMR Spectroscopy for Biopolymers, Principles and Applications. Berlin: Springer; 2006.

[25] Sarkar SK, Sullivan CE, Torchia DA. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J. Biol. Chem. 1983;258:9762–9767.

[26] Jelinski LW, Sullivan CE, Torchia DA. 2H NMR study of molecular motion in collagen fibrils. Nature. 1980;284:531–534.

[27] Suwelack D, Rothwell WP, Waugh JS. Slow molecular motion detected in the NMR spectra of rotating solids. J. Chem. Phys. 1980;73:2559–2569.

[28] Rothwell WP, Waugh JS. Transverse relaxation of dipolar coupled spin systems under rf irradiation: detecting motions in solids. J. Chem. Phys. 1981;74:2721–2732.

[29] Naito A, Fukutani A, Uitdehaag M, Tuzi S, Saitô H. Backbone dynamics of polycrystalline peptides studied by measurements of 15N NMR lineshapes and 13C transverse relaxation times. J. Mol. Struct. 1998;441:231–241.

[30] Palmer III AG. Dynamic properties of proteins from NMR spectroscopy. Curr. Opin. Biotechnol. 1993;4:385–391.

[30a] Palmer III AG. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 2004;104:3623–3640.

[31] Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006;106:1624–1671.

[32] Igumenova TI, Frederick KK, Wand AJ. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 2006;106:1672–1699.

[32a] Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta. 2011;1814:942–968.

[33] Daragan VA, Mayo KH. Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog. Nucl. Magn. Reson. Spectrosc. 1997;31:63–105.

[34] Woessner DE. Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J. Chem. Phys. 1962;36:1–4.

[35] Richarz R, Nagayama K, Wüthrich K. Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analog. Biochemistry. 1980;19:5189–5196.

[36] Peng JW, Wagner G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 1992;98:308–332.

[37] Peng JW, Wagner G. Mapping of the spectral densities of nitrogen-hydrogen bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry. 1992;31:8571–8586.

[38] Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR Spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28:8972–8979.

[39] Palmer III AG, Rance M, Wright PE. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. Chem. Soc. 1991;113:4371–4380.

[40] Akke M, Skelton NJ, Kördel J, Palmer III AG, Chazin WJ. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993;32:9832–9844.

[41] Mandel AM, Akke M, Palmer III AG. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 1995;246:144–163.

[42] Pang Y, Buck M, Zuiderweg ER. Backbone dynamics of the ribonuclease binase active site area using multinuclear (15N and 13CO) NMR relaxation and computational molecular dynamics. Biochemistry. 2002;41:2655–2666.

[43] Muhandiram DR, Yamazaki T, Sykes BD, Kay LE. Measurement of 2H T1 and T1? relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J. Am. Chem. Soc. 1995;117:11536–11544.

[44] Kay LE, Muhandiram DR, Farrow NA, Aubin Y, Forman-Kay JD. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry. 1996;35:361–368.

[45] Akke M, Brüschweiler R, Palmer III AG. NMR order parameters and free energy: an analytical approach and its application to cooperative calcium(2 +) binding by calbindin D9k. J. Am. Chem. Soc. 1993;115:9832–9833.

[46] Yang D, Kay LE. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 1996;263:369–382.

[47] Li Z, Raychaudhuri S, Wand AJ. Insights into local residual entropy of proteins provided by NMR relaxlation. Protein Sci. 1996;5:2647–2650.

[48] Spyracopoulos L, Sykes BD. Thermodynamic insights into proteins from NMR spin relaxation studies. Curr. Opin. Struct. Biol. 2001;11:555–559.

[49] Tuzi S, Naito A, Saitô H. 13C NMR study on conformation and dynamics of the transmembrane...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.