Buch, Englisch, 280 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 676 g
Buch, Englisch, 280 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 676 g
Reihe: Computational Microelectronics
ISBN: 978-3-211-83558-6
Verlag: Springer
From the reviews: "This is a well written book offering a clear and detailed insight into physical processes and numerical procedures essential to the single-electron dynamics in electro-conducting media." Zentralblatt für Mathematik und ihre Grenzgebiete
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Bauelemente, Schaltkreise
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Mikroprozessoren
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Mathematik | Informatik EDV | Informatik Informatik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
Weitere Infos & Material
1 Introduction.- 1.1 Single-Electronics — Made Easy.- 1.2 A Historical Look Back.- 2 Theory.- 2.1 Orthodox Single-Electron Theory.- 2.2 Time and Space Correlations.- 2.3 Master Equation of Electron Transport.- 2.4 Extensions to the Orthodox Theory.- 3 Simulation Methods and Numerical Algorithms.- 3.1 Monte Carlo Method.- 3.2 Solution of the Master Equation.- 3.3 Coupling with SPICE.- 3.4 Free Energy.- 3.5 Tunnel Transmission Coefficient.- 3.6 Energy Levels.- 3.7 Evaluation Schemes for Cotunneling.- 3.8 Rate Calculation Including Electromagnetic Environment.- 3.9 Numerical Integration of Tunnel Rates.- 3.10 Time-Dependent Node Voltages and Node Charges.- 3.11 Stability Diagram and Stable States.- 3.12 Capacitance Calculations.- Circuits and Applications.- 4.1 Fundamental Circuits.- 4.2 Metrology Applications.- 4.3 Memory.- 4.4 Logic.- 4.5 Interfacing to CMOS.- 4.6 Exotic Circuits.- 4.7 Evolutionary Circuit Design.- 5 Random Background Charges.- 5.1 The Good Side of High Charge Sensitivity.- 5.2 Solutions on the Material Level.- 5.3 Solutions on the Device Level.- 5.4 Solutions on the Circuit and System Level.- 6 Manufacturing Methods and Material Systems.- 6.1 Shadow Evaporation.- 6.2 Step-Edge Cutoff.- 6.3 Nanoimprint.- 6.4 Planar Quantum Dots.- 6.5 Scanning Probe Microscopy.- 6.6 Granular Films.- 6.7 Self-Assembled Structures.- 6.8 Outlook.- Appendixes.- A Fermi’s Golden Rule.- B Capacitance and Resistance Extraction from Measured Data.- C Analytic Solutions of the Cotunneling Rate.- D Algorithms from Number Theory.- E Convex Hull of Point Set.- F Analytic Capacitance Calculation.- References.




