Buch, Englisch, 442 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1830 g
A Concise Course in Statistical Inference
Buch, Englisch, 442 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1830 g
ISBN: 978-0-387-40272-7
Verlag: Springer
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines.
The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Probability.- Random Variables.- Expectation.- Inequalities.- Convergence of Random Variables.- Models, Statistical Inference and Learning.- Estimating the CDF and Statistical Functionals.- The Bootstrap.- Parametric Inference.- Hypothesis Testing and p-values.- Bayesian Inference.- Statistical Decision Theory.- Linear and Logistic Regression.- Multivariate Models.- Inference about Independence.- Causal Inference.- Directed Graphs and Conditional Independence.- Undirected Graphs.- Loglinear Models.- Nonparametric Curve Estimation.- Smoothing Using Orthogonal Functions.- Classification.- Probability Redux: Stochastic Processes.- Simulation Methods.




