Buch, Englisch, 442 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1830 g
Reihe: Springer Texts in Statistics
A Concise Course in Statistical Inference
Buch, Englisch, 442 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1830 g
Reihe: Springer Texts in Statistics
ISBN: 978-0-387-40272-7
Verlag: Springer-Verlag GmbH
The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
Weitere Infos & Material
Probability.- Random Variables.- Expectation.- Inequalities.- Convergence of Random Variables.- Models, Statistical Inference and Learning.- Estimating the CDF and Statistical Functionals.- The Bootstrap.- Parametric Inference.- Hypothesis Testing and p-values.- Bayesian Inference.- Statistical Decision Theory.- Linear and Logistic Regression.- Multivariate Models.- Inference about Independence.- Causal Inference.- Directed Graphs and Conditional Independence.- Undirected Graphs.- Loglinear Models.- Nonparametric Curve Estimation.- Smoothing Using Orthogonal Functions.- Classification.- Probability Redux: Stochastic Processes.- Simulation Methods.