Buch, Englisch, Band 276, 614 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 10579 g
Buch, Englisch, Band 276, 614 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 10579 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-3-319-58539-0
Verlag: Springer International Publishing
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory.
In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study.
Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Nichtlineare Wissenschaft
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
Weitere Infos & Material
Motivation.- Norms and Banach Spaces.- Hilbert Spaces, Fourier Series, Unitary Representations.- Uniform Boundedness and Open Mapping Theorem.- Sobolev Spaces and Dirichlet’s Boundary Problem.- Compact Self-Adjoint Operators, Laplace Eigenfunctions.- Dual Spaces.- Locally Convex Vector Spaces.- Unitary Operators and Flows, Fourier Transform.- Locally Compact Groups, Amenability, Property (T).- Banach Algebras and the Spectrum.- Spectral Theory and Functional Calculus.- Self-Adjoint and Symmetric Operators.- The Prime Number Theorem.- Appendix A: Set Theory and Topology.- Appendix B: Measure Theory.- Hints for Selected Problems.- Notes.