Wang / Yang | Emulation of Complex Fluid Flows | Buch | 978-3-11-163135-6 | sack.de

Buch, Englisch, 135 Seiten, Format (B × H): 170 mm x 240 mm

Reihe: ISSN

Wang / Yang

Emulation of Complex Fluid Flows

Projection-Based Reduced-Order Modeling and Machine Learning
1. Auflage 2025
ISBN: 978-3-11-163135-6
Verlag: De Gruyter

Projection-Based Reduced-Order Modeling and Machine Learning

Buch, Englisch, 135 Seiten, Format (B × H): 170 mm x 240 mm

Reihe: ISSN

ISBN: 978-3-11-163135-6
Verlag: De Gruyter


While artificial intelligence has made significant strides in imaging and natural language processing, its utilization in engineering science remains relatively new. This book aims to introduce machine learning techniques to facilitate the emulation of complex fluid flows. The work focuses on projection-based reduced-order models (ROMs) that condense high-dimensional data into a low-dimensional subspace by leveraging principal components. Techniques like proper orthogonal decomposition (POD) and convolutional autoencoder (CAE) are utilized to configure this subspace, establishing a functional mapping between input parameters and solution fields. The applicability of POD-based ROMs for spatial and spatiotemporal problems are explored across various engineering scenarios, including flow past a cylinder, supercritical turbulent flows, and hydrogen-blended combustion. To capture intricate dynamics, common POD, kernel-smoothed POD, and common kernel-smoothed POD methods are developed in sequence. Additionally, the effectiveness of POD and CAE in capturing nonlinear features are compared. This book is designed to benefit graduate students and researchers interested in the intersection of data and engineering sciences.

Wang / Yang Emulation of Complex Fluid Flows jetzt bestellen!

Zielgruppe


Researchers, students, and industrial professionals at the inters


Autoren/Hrsg.


Weitere Infos & Material


Prof. Xingjian Wang received his Ph.D. from the Georgia Institute of Technology in 2016 and is currently associate professor in the Department of Energy and Power at Tsinghua University. He previously served as assistant professor in the Department of Mechanical and Civil Engineering at the Florida Institute of Technology. His research focuses on the interdisciplinary study of engineering science and machine learning, particularly in developing reduced-order models and analyzing complex fluid flows and combustion under extreme conditions. Dr. Wang has received multiple awards, including the 2020 iLASS Asia Best Paper Award and the 2019 SPES Award from the American Statistical Society. His contributions to the field are well-recognized, with several articles featured as Editor’s Picks and highlighted on the front cover of .

Prof. Vigor Yang is professor of aerospace engineering and a faculty member of the Machine Learning PhD Program at the Georgia Institute of Technology. He is also the founding director of Georgia Tech‘s James C. Wu Laboratory of Artificial Intelligence in Technology, Engineering, and Computing (ArTEC). Prof. Yang's research lies at the interface between engineering and data sciences, driving forward the integration of artificial intelligence and engineering disciplines for cutting-edge solutions. His extensive body of work includes advancements in thermal-fluid dynamics and propulsion, with a strong emphasis on leveraging machine learning to enhance these areas. He is a member of the U.S. National Academy of Engineering, an academician of the Academia Sinica, and a foreign member of the Chinese Academy of Engineering and the Indian National Academy of Engineering



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.