E-Book, Englisch, 550 Seiten
Reihe: ISSN
E-Book, Englisch, 550 Seiten
Reihe: ISSN
ISBN: 978-3-11-025905-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Applied Mathematicians, Geoscientists, Professionals Working in Image Processing; Academic Libraries
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Geophysik
- Naturwissenschaften Physik Angewandte Physik Geophysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
Weitere Infos & Material
1;Preface;5
2;Editor’s Preface;7
3;I Introduction;21
3.1;1 Inverse Problems of Mathematical Physics;23
3.1.1;1.1 Introduction;23
3.1.2;1.2 Examples of Inverse and Ill-posed Problems;32
3.1.3;1.3 Well-posed and Ill-posed Problems;44
3.1.4;1.4 The Tikhonov Theorem;46
3.1.5;1.5 The Ivanov Theorem: Quasi-solution;49
3.1.6;1.6 The Lavrentiev’s Method;53
3.1.7;1.7 The Tikhonov Regularization Method;55
3.1.8;References;64
4;II Recent Advances in Regularization Theory and Methods;67
4.1;2 Using Parallel Computing for Solving Multidimensional Ill-posed Problems;69
4.1.1;2.1 Introduction;69
4.1.2;2.2 Using Parallel Computing;71
4.1.2.1;2.2.1 Main idea of parallel computing;71
4.1.2.2;2.2.2 Parallel computing limitations;72
4.1.3;2.3 Parallelization of Multidimensional Ill-posed Problem;73
4.1.3.1;2.3.1 Formulation of the problem and method of solution;73
4.1.3.2;2.3.2 Finite-difference approximation of the functional and its gradient;76
4.1.3.3;2.3.3 Parallelization of the minimization problem;78
4.1.4;2.4 Some Examples of Calculations;81
4.1.5;2.5 Conclusions;83
4.1.6;References;83
4.2;3 Regularization of Fredholm Integral Equations of the First Kind using Nyström Approximation;85
4.2.1;3.1 Introduction;85
4.2.2;3.2 Nyström Method for Regularized Equations;88
4.2.2.1;3.2.1 Nyström approximation of integral operators;88
4.2.2.2;3.2.2 Approximation of regularized equation;89
4.2.2.3;3.2.3 Solvability of approximate regularized equation;90
4.2.2.4;3.2.4 Method of numerical solution;93
4.2.3;3.3 Error Estimates;94
4.2.3.1;3.3.1 Some preparatory results;94
4.2.3.2;3.3.2 Error estimate with respect to || · ||2;97
4.2.3.3;3.3.3 Error estimate with respect to || · ||8;97
4.2.3.4;3.3.4 A modified method;98
4.2.4;3.4 Conclusion;100
4.2.5;References;101
4.3;4 Regularization of Numerical Differentiation: Methods and Applications;103
4.3.1;4.1 Introduction;103
4.3.2;4.2 Regularizing Schemes;107
4.3.2.1;4.2.1 Basic settings;107
4.3.2.2;4.2.2 Regularized difference method (RDM);108
4.3.2.3;4.2.3 Smoother-Based regularization (SBR);109
4.3.2.4;4.2.4 Mollifier regularization method (MRM);110
4.3.2.5;4.2.5 Tikhonov’s variational regularization (TiVR);112
4.3.2.6;4.2.6 Lavrentiev regularization method (LRM);113
4.3.2.7;4.2.7 Discrete regularization method (DRM);114
4.3.2.8;4.2.8 Semi-Discrete Tikhonov regularization (SDTR);116
4.3.2.9;4.2.9 Total variation regularization (TVR);119
4.3.3;4.3 Numerical Comparisons;122
4.3.4;4.4 Applied Examples;125
4.3.4.1;4.4.1 Simple applied problems;126
4.3.4.2;4.4.2 The inverse heat conduct problems (IHCP);127
4.3.4.3;4.4.3 The parameter estimation in new product diffusion model;128
4.3.4.4;4.4.4 Parameter identification of sturm-liouville operator;130
4.3.4.5;4.4.5 The numerical inversion of Abel transform;132
4.3.4.6;4.4.6 The linear viscoelastic stress analysis;134
4.3.5;4.5 Discussion and Conclusion;135
4.3.6;References;137
4.4;5 Numerical Analytic Continuation and Regularization;141
4.4.1;5.1 Introduction;141
4.4.2;5.2 Description of the Problems in Strip Domain and Some Assumptions;144
4.4.2.1;5.2.1 Description of the problems;144
4.4.2.2;5.2.2 Some assumptions;145
4.4.2.3;5.2.3 The ill-posedness analysis for the Problems 5.2.1 and 5.2.2;145
4.4.2.4;5.2.4 The basic idea of the regularization for Problems 5.2.1 and 5.2.2;146
4.4.3;5.3 Some Regularization Methods;146
4.4.3.1;5.3.1 Some methods for solving Problem 5.2.1;146
4.4.3.2;5.3.2 Some methods for solving Problem 5.2.2;153
4.4.4;5.4 Numerical Tests;155
4.4.5;References;160
4.5;6 An Optimal Perturbation Regularization Algorithm for Function Reconstruction and Its Applications;163
4.5.1;6.1 Introduction;163
4.5.2;6.2 The Optimal Perturbation Regularization Algorithm;164
4.5.3;6.3 Numerical Simulations;167
4.5.3.1;6.3.1 Inversion of time-dependent reaction coefficient;167
4.5.3.2;6.3.2 Inversion of space-dependent reaction coefficient;169
4.5.3.3;6.3.3 Inversion of state-dependent source term;171
4.5.3.4;6.3.4 Inversion of space-dependent diffusion coefficient;177
4.5.4;6.4 Applications;179
4.5.4.1;6.4.1 Determining magnitude of pollution source;179
4.5.4.2;6.4.2 Data reconstruction in an undisturbed soil-column experiment;182
4.5.5;6.5 Conclusions;185
4.5.6;References;186
4.6;7 Filtering and Inverse Problems Solving;189
4.6.1;7.1 Introduction;189
4.6.2;7.2 SLAE Compatibility;190
4.6.3;7.3 Conditionality;191
4.6.4;7.4 Pseudosolutions;193
4.6.5;7.5 Singular Value Decomposition;195
4.6.6;7.6 Geometry of Pseudosolution;197
4.6.7;7.7 Inverse Problems for the Discrete Models of Observations;198
4.6.8;7.8 The Model in Spectral Domain;200
4.6.9;7.9 Regularization of Ill-posed Systems;201
4.6.10;7.10 General Remarks, the Dilemma of Bias and Dispersion;201
4.6.11;7.11 Models, Based on the Integral Equations;204
4.6.12;7.12 Panteleev Corrective Filtering;205
4.6.13;7.13 Philips-Tikhonov Regularization;206
4.6.14;References;214
5;III Optimal Inverse Design and Optimization Methods;215
5.1;8 Inverse Design of Alloys’ Chemistry for Specified Thermo-Mechanical Properties by using Multi-objective Optimization;217
5.1.1;8.1 Introduction;218
5.1.2;8.2 Multi-Objective Constrained Optimization and Response Surfaces;219
5.1.3;8.3 Summary of IOSO Algorithm;221
5.1.4;8.4 Mathematical Formulations of Objectives and Constraints;223
5.1.5;8.5 Determining Names of Alloying Elements and Their Concentrations for Specified Properties of Alloys;232
5.1.6;8.6 Inverse Design of Bulk Metallic Glasses;234
5.1.7;8.7 Open Problems;235
5.1.8;8.8 Conclusions;238
5.1.9;References;239
5.2;9 Two Approaches to Reduce the Parameter Identification Errors;241
5.2.1;9.1 Introduction;241
5.2.2;9.2 The Optimal Sensor Placement Design;243
5.2.2.1;9.2.1 The well-posedness analysis of the parameter identification procedure;243
5.2.2.2;9.2.2 The algorithm for optimal sensor placement design;246
5.2.2.3;9.2.3 The integrated optimal sensor placement and parameter identification algorithm;249
5.2.2.4;9.2.4 Examples;249
5.2.3;9.3 The Regularization Method with the Adaptive Updating of A-priori Information;253
5.2.3.1;9.3.1 Modified extended Bayesian method for parameter identification;254
5.2.3.2;9.3.2 The well-posedness analysis of modified extended Bayesian method;254
5.2.3.3;9.3.3 Examples;256
5.2.4;9.4 Conclusion;258
5.2.5;References;258
5.3;10 A General Convergence Result for the BFGS Method;261
5.3.1;10.1 Introduction;261
5.3.2;10.2 The BFGS Algorithm;263
5.3.3;10.3 A General Convergence Result for the BFGS Algorithm;264
5.3.4;10.4 Conclusion and Discussions;266
5.3.5;References;267
6;IV Recent Advances in Inverse Scattering;269
6.1;11 Uniqueness Results for Inverse Scattering Problems;271
6.1.1;11.1 Introduction;271
6.1.2;11.2 Uniqueness for Inhomogeneity n;276
6.1.3;11.3 Uniqueness for Smooth Obstacles;276
6.1.4;11.4 Uniqueness for Polygon or Polyhedra;282
6.1.5;11.5 Uniqueness for Balls or Discs;283
6.1.6;11.6 Uniqueness for Surfaces or Curves;285
6.1.7;11.7 Uniqueness Results in a Layered Medium;285
6.1.8;11.8 Open Problems;292
6.1.9;References;296
6.2;12 Shape Reconstruction of Inverse Medium Scattering for the Helmholtz Equation;303
6.2.1;12.1 Introduction;303
6.2.2;12.2 Analysis of the scattering map;305
6.2.3;12.3 Inverse medium scattering;310
6.2.3.1;12.3.1 Shape reconstruction;311
6.2.3.2;12.3.2 Born approximation;312
6.2.3.3;12.3.3 Recursive linearization;314
6.2.4;12.4 Numerical experiments;318
6.2.5;12.5 Concluding remarks;323
6.2.6;References;323
7;V Inverse Vibration, Data Processing and Imaging;327
7.1;13 Numerical Aspects of the Calculation of Molecular Force Fields from Experimental Data;329
7.1.1;13.1 Introduction;329
7.1.2;13.2 Molecular Force Field Models;331
7.1.3;13.3 Formulation of Inverse Vibration Problem;332
7.1.4;13.4 Constraints on the Values of Force Constants Based on Quantum Mechanical Calculations;334
7.1.5;13.5 Generalized Inverse Structural Problem;339
7.1.6;13.6 Computer Implementation;341
7.1.7;13.7 Applications;343
7.1.8;References;347
7.2;14 Some Mathematical Problems in Biomedical Imaging;351
7.2.1;14.1 Introduction;351
7.2.2;14.2 Mathematical Models;354
7.2.2.1;14.2.1 Forward problem;354
7.2.2.2;14.2.2 Inverse problem;356
7.2.3;14.3 Harmonic Bz Algorithm;359
7.2.3.1;14.3.1 Algorithm description;360
7.2.3.2;14.3.2 Convergence analysis;362
7.2.3.3;14.3.3 The stable computation of ...;364
7.2.4;14.4 Integral Equations Method;368
7.2.4.1;14.4.1 Algorithm description;368
7.2.4.2;14.4.2 Regularization and discretization;372
7.2.5;14.5 Numerical Experiments;374
7.2.6;References;382
8;VI Numerical Inversion in Geosciences;387
8.1;15 Numerical Methods for Solving Inverse Hyperbolic Problems;389
8.1.1;15.1 Introduction;389
8.1.2;15.2 Gel’fand-Levitan-Krein Method;390
8.1.2.1;15.2.1 The two-dimensional analogy of Gel'fand-Levitan-Krein equation;394
8.1.2.2;15.2.2 N-approximation of Gel'fand-Levitan-Krein equation;397
8.1.2.3;15.2.3 Numerical results and remarks;399
8.1.3;15.3 Linearized Multidimensional Inverse Problem for the Wave Equation;399
8.1.3.1;15.3.1 Problem formulation;401
8.1.3.2;15.3.2 Linearization;402
8.1.4;15.4 Modified Landweber Iteration;404
8.1.4.1;15.4.1 Statement of the problem;405
8.1.4.2;15.4.2 Landweber iteration;407
8.1.4.3;15.4.3 Modification of algorithm;408
8.1.4.4;15.4.4 Numerical results;409
8.1.5;References;410
8.2;16 Inversion Studies in Seismic Oceanography;415
8.2.1;16.1 Introduction of Seismic Oceanography;415
8.2.2;16.2 Thermohaline Structure Inversion;418
8.2.2.1;16.2.1 Inversion method for temperature and salinity;418
8.2.2.2;16.2.2 Inversion experiment of synthetic seismic data;419
8.2.2.3;16.2.3 Inversion experiment of GO data (Huang et al., 2011);422
8.2.3;16.3 Discussion and Conclusion;426
8.2.4;References;428
8.3;17 Image Resolution Beyond the Classical Limit;431
8.3.1;17.1 Introduction;431
8.3.2;17.2 Aperture and Resolution Functions;432
8.3.3;17.3 Deconvolution Approach to Improved Resolution;437
8.3.4;17.4 MUSIC Pseudo-Spectrum Approach to Improved Resolution;444
8.3.5;17.5 Concluding Remarks;454
8.3.6;References;456
8.4;18 Seismic Migration and Inversion;459
8.4.1;18.1 Introduction;459
8.4.2;18.2 Migration Methods: A Brief Review;460
8.4.2.1;18.2.1 Kirchhoff migration;460
8.4.2.2;18.2.2 Wave field extrapolation;461
8.4.2.3;18.2.3 Finite difference migration in . — X domain;462
8.4.2.4;18.2.4 Phase shift migration;463
8.4.2.5;18.2.5 Stolt migration;463
8.4.2.6;18.2.6 Reverse time migration;466
8.4.2.7;18.2.7 Gaussian beam migration;467
8.4.2.8;18.2.8 Interferometric migration;467
8.4.2.9;18.2.9 Ray tracing;469
8.4.3;18.3 Seismic Migration and Inversion;472
8.4.3.1;18.3.1 The forward model;474
8.4.3.2;18.3.2 Migration deconvolution;476
8.4.3.3;18.3.3 Regularization model;477
8.4.3.4;18.3.4 Solving methods based on optimization;478
8.4.3.5;18.3.5 Preconditioning;482
8.4.3.6;18.3.6 Preconditioners;484
8.4.4;18.4 Illustrative Examples;485
8.4.4.1;18.4.1 Regularized migration inversion for point diffraction scatterers;485
8.4.4.2;18.4.2 Comparison with the interferometric migration;488
8.4.5;18.5 Conclusion;488
8.4.6;References;491
8.5;19 Seismic Wavefields Interpolation Based on Sparse Regularization and Compressive Sensing;495
8.5.1;19.1 Introduction;495
8.5.2;19.2 Sparse Transforms;497
8.5.2.1;19.2.1 Fourier, wavelet, Radon and ridgelet transforms;497
8.5.2.2;19.2.2 The curvelet transform;500
8.5.3;19.3 Sparse Regularizing Modeling;501
8.5.3.1;19.3.1 Minimization in l0 space;501
8.5.3.2;19.3.2 Minimization in l1 space;501
8.5.3.3;19.3.3 Minimization in lp-lq space;502
8.5.4;19.4 Brief Review of Previous Methods in Mathematics;502
8.5.5;19.5 Sparse Optimization Methods;505
8.5.5.1;19.5.1 lo quasi-norm approximation method;505
8.5.5.2;19.5.2 l1-norm approximation method;507
8.5.5.3;19.5.3 Linear programming method;509
8.5.5.4;19.5.4 Alternating direction method;511
8.5.5.5;19.5.5 l1-norm constrained trust region method;513
8.5.6;19.6 Sampling;516
8.5.7;19.7 Numerical Experiments;517
8.5.7.1;19.7.1 Reconstruction of shot gathers;517
8.5.7.2;19.7.2 Field data;518
8.5.8;19.8 Conclusion;523
8.5.9;References;523
8.6;20 Some Researches on Quantitative Remote Sensing Inversion;529
8.6.1;20.1 Introduction;529
8.6.2;20.2 Models;531
8.6.3;20.3 A Priori Knowledge;534
8.6.4;20.4 Optimization Algorithms;536
8.6.5;20.5 Multi-stage Inversion Strategy;540
8.6.6;20.6 Conclusion;544
8.6.7;References;545
9;Index;549