Wang / Quinn | Endotoxins: Structure, Function and Recognition | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 53, 415 Seiten

Reihe: Subcellular Biochemistry

Wang / Quinn Endotoxins: Structure, Function and Recognition


1. Auflage 2010
ISBN: 978-90-481-9078-2
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 53, 415 Seiten

Reihe: Subcellular Biochemistry

ISBN: 978-90-481-9078-2
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



Endotoxins are potentially toxic compounds produced by Gram-negative bacteria including some pathogens. Unlike exotoxins, which are secreted in soluble form by live bacteria, endotoxins are comprised of structural components of bacteria. Endotoxins can cause a whole-body inflammatory state, sepsis, leading to low blood pressure, multiple organ dysfunction syndrome and death. This book brings together contributions from researchers in the forefront of these subjects. It is divided into two sections. The first deals with how endotoxins are synthesized and end up on the bacterial surface. The second discussed how endotoxins activate TLR4 and, in turn, how TLR4 generates the molecular signals leading to infectious and inflammatory diseases. The way endotoxins interact with the host cells is fundamental to understanding the mechanism of sepsis, and recent research on these aspects of endotoxins has served to illuminate previously undescribed functions of the innate immune system. This volume presents a description of endotoxins according to their genetic constitution, structure, function and mode of interaction with host cells.

Wang / Quinn Endotoxins: Structure, Function and Recognition jetzt bestellen!

Weitere Infos & Material


1;Frontispiece;7
2;Preface;8
3;Contents;10
4;Contributors;12
5;About the Editors;15
6;Part I Structure and Properties of Endotoxins;16
6.1;1 Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria;17
6.1.1;1.1 Introduction;18
6.1.2;1.2 Biosynthesize of LPS on the Surfaces of Inner Membrane;19
6.1.2.1;1.2.1 Beginning in the Cytoplasm to Form Kdo2-Lipid A;19
6.1.2.2;1.2.2 Connecting the Core Oligosaccharides to Lipid A;22
6.1.2.3;1.2.3 Synthesizing the O-antigen at the Cytoplasmic Surface of the Inner Membrane;23
6.1.2.4;1.2.4 Crossing the Inner Membrane;23
6.1.2.5;1.2.5 Assembling LPS at the Periplasmic Surface of the Inner Membrane;24
6.1.3;1.3 Export of LPS to the Surface of Bacteria;25
6.1.4;1.4 Structural Modification of LPS;26
6.1.4.1;1.4.1 Regulation of LPS Modification;26
6.1.4.2;1.4.2 Modifications in the Hydrophobic Region of LPS;29
6.1.4.3;1.4.3 Modifications in the Hydrophilic Region of LPS;30
6.1.5;1.5 Conclusion;32
6.1.6;References;32
6.2;2 Purification and Characterization of Lipopolysaccharides;40
6.2.1;2.1 Introduction;41
6.2.2;2.2 Extraction of Lipopolysaccharides;41
6.2.2.1;2.2.1 Large Scale Extraction of Lipopolysaccharides;41
6.2.2.1.1;2.2.1.1 Phenol--Water Extraction;42
6.2.2.1.2;2.2.1.2 Ether Extraction;43
6.2.2.1.3;2.2.1.3 EDTA Promoted Extraction;44
6.2.2.2;2.2.2 Micro-extraction of Lipopolysaccharides;45
6.2.2.2.1;2.2.2.1 Phenol--Water Micro-extraction;45
6.2.2.2.2;2.2.2.2 Phenol--Chloroform Micro-extraction;46
6.2.2.3;2.2.3 Extraction of Lipid A;46
6.2.2.3.1;2.2.3.1 Extraction of Lipid A from LPS;46
6.2.2.3.2;2.2.3.2 Extraction of Lipid A from Bacteria;47
6.2.2.3.3;2.2.3.3 Micro-extraction of Lipid A;47
6.2.2.3.4;2.2.3.4 Extraction of Free Lipid A;49
6.2.3;2.3 Purification of Lipopolysaccharides;49
6.2.3.1;2.3.1 Removal of Contaminants;50
6.2.3.2;2.3.2 Gel Filtration Chromatography of LPS;51
6.2.3.3;2.3.3 Ion-Exchange Chromatography of LPS;52
6.2.3.4;2.3.4 Capillary Electrophoresis of LPS;52
6.2.3.5;2.3.5 Purification of Lipid A;52
6.2.3.6;2.3.6 Micro-purification Method;54
6.2.4;2.4 Analysis of Lipopolysaccharides;54
6.2.4.1;2.4.1 Electrophoresis of LPS;55
6.2.4.2;2.4.2 Staining Methods;56
6.2.4.2.1;2.4.2.1 Silver Stain;56
6.2.4.2.2;2.4.2.2 Ethidium Bromide Stain;57
6.2.4.2.3;2.4.2.3 Zinc-Imidazole Stain;57
6.2.4.3;2.4.3 Immunoblotting Method;58
6.2.4.4;2.4.4 Analysis of Lipid A;58
6.2.5;2.5 Conclusions;58
6.2.6;References;59
6.3;3 Endotoxins: Relationship Between Structure, Function,INTbreak; and Activity;65
6.3.1;3.1 Introduction;66
6.3.2;3.2 Physicochemical Characterisation of Endotoxins;66
6.3.3;3.3 Morphology and Size Distribution of Endotoxin Aggregates;69
6.3.4;3.4 Intramolecular Conformation;70
6.3.5;3.5 Biophysical Mechanisms of Agonism and Antagonism;72
6.3.6;3.6 Endotoxically Active Unit;74
6.3.7;References;76
6.4;4 The Diversity of the Core Oligosaccharide in Lipopolysaccharides;80
6.4.1;4.1 Introduction;81
6.4.2;4.2 Core Structures;86
6.4.2.1;4.2.1 Enterobacteria;86
6.4.2.2;4.2.2 Pasteurellaceae;90
6.4.2.3;4.2.3 Pseudomonas;92
6.4.2.4;4.2.4 Acinetobacter;94
6.4.2.5;4.2.5 Xanthomonas;95
6.4.2.6;4.2.6 Burkholderia;96
6.4.2.7;4.2.7 Ralstonia;98
6.4.2.8;4.2.8 Shewanella;98
6.4.2.9;4.2.9 Alteromonadaceae;99
6.4.2.10;4.2.10 Arenibacter Certesii;100
6.4.2.11;4.2.11 Psychromonas Arctica;101
6.4.2.12;4.2.12 Vibrionaceae;102
6.4.2.13;4.2.13 Rizhobiaceae;102
6.4.2.14;4.2.14 Loktanella Rosea;102
6.4.2.15;4.2.15 Halomonas Pantellerensis;104
6.4.3;4.3 Conclusion;105
6.4.4;References;105
6.5;5 Salmonella-Regulated Lipopolysaccharide Modifications;111
6.5.1;5.1 Introduction;112
6.5.1.1;5.1.1 Clinical Features and Relevance;112
6.5.1.2;5.1.2 Salmonella Pathogenesis;113
6.5.1.3;5.1.3 Host Defenses Against Salmonella Infection;115
6.5.1.4;5.1.4 Bacterial Modification of LPS and Other Surface Moieties;116
6.5.2;5.2 Two-Component Regulatory Systems;117
6.5.2.1;5.2.1 PhoP--PhoQ Regulatory System;119
6.5.2.2;5.2.2 PmrA--PmrB Regulatory System;120
6.5.2.3;5.2.3 RcsC--RcsD--RcsB Regulatory System;122
6.5.3;5.3 Additional Bacteria Capable of Modifying LPS;124
6.5.4;5.4 Summary and Significance;124
6.5.5;References;125
6.6;6 The Variation of O Antigens in Gram-Negative Bacteria;133
6.6.1;6.1 Introduction;134
6.6.2;6.2 O Serotyping Schemes;135
6.6.2.1;6.2.1 Conventional O Serotyping Methods;135
6.6.2.2;6.2.2 Molecular Typing Methods;136
6.6.2.2.1;6.2.2.1 PCR-RFLP;136
6.6.2.2.2;6.2.2.2 Gene-Specific PCR;137
6.6.2.2.3;6.2.2.3 DNA Microarray;137
6.6.3;6.3 O antigen Diversity in Gram-Negative Bacteria;138
6.6.3.1;6.3.1 Enterobacteriaceae;138
6.6.3.1.1;6.3.1.1 Escherichia and Shigella;138
6.6.3.1.2;6.3.1.2 Salmonella ;139
6.6.3.1.3;6.3.1.3 Yersinia ;139
6.6.3.1.4;6.3.1.4 Citrobacter ;140
6.6.3.1.5;6.3.1.5 Klebsiella ;140
6.6.3.1.6;6.3.1.6 Serratia ;140
6.6.3.1.7;6.3.1.7 Hafnia ;141
6.6.3.1.8;6.3.1.8 Proteus ;141
6.6.3.2;6.3.2 Pseudomonadaceae;141
6.6.3.2.1;6.3.2.1 P. aeruginosa ;142
6.6.3.2.2;6.3.2.2 P. syringae ;142
6.6.3.3;6.3.3 Vibrionaceae;142
6.6.4;6.4 General Properties of O Antigen Gene Clusters;142
6.6.4.1;6.4.1 O Antigen Biosynthesis;143
6.6.4.2;6.4.2 Examples of O Antigen Gene Clusters;145
6.6.4.2.1;6.4.2.1 E. coli, S. enterica and Shigella spp;145
6.6.4.2.2;6.4.2.2 Enterobacter Sakazakii;146
6.6.4.2.3;6.4.2.3 P. aeruginosa;146
6.6.4.2.4;6.4.2.4 V. cholerae;146
6.6.4.2.5;6.4.2.5 Yersinia;147
6.6.4.2.6;6.4.2.6 Legionella Pneumophila;148
6.6.4.2.7;6.4.2.7 C. freundii;148
6.6.5;6.5 Formation and Distribution of O Antigen Gene Clusters;148
6.6.5.1;6.5.1 Lateral Transfer of O Antigen Genes by Homologous Recombination;149
6.6.5.2;6.5.2 Insertion and Deletion of O Antigen Genes Mediated by IS Elements;150
6.6.5.3;6.5.3 Role of Plasmids in Evolution of O Antigen gene Clusters;150
6.6.5.4;6.5.4 O Antigen Modification Mediated by Phages;151
6.6.6;6.6 O antigen and Virulence;153
6.6.6.1;6.6.1 The Complete Loss of O Antigen Leads to Severe Attenuation of Virulence;153
6.6.6.2;6.6.2 The O Antigen Differences Can Account for Differences in the Nature of Pathogenicity;153
6.6.6.3;6.6.3 The Effect of the Chemical Composition and Structure of an O Side Branch on Virulence;154
6.6.6.4;6.6.4 The O Antigen Chain Lengths is Important for the Full Virulence;154
6.6.7;6.7 Conclusions;155
6.6.8;References;155
6.7;7 Regulators of TLR4 Signaling by Endotoxins;163
6.7.1;7.1 Introduction;164
6.7.2;7.2 TLR4 Signaling Pathway;165
6.7.2.1;7.2.1 MyD88-Dependent Pathway;166
6.7.2.2;7.2.2 MyD88-Independent Pathway;168
6.7.3;7.3 Localisation of TLR4 and its Adaptor Molecules;168
6.7.4;7.4 Chaperones;169
6.7.5;7.5 Negative Regulators of TLR4 Signaling;170
6.7.5.1;7.5.1 Cell Surface Receptors;170
6.7.5.2;7.5.2 Splice Variants;171
6.7.5.3;7.5.3 Inhibitory Molecules;172
6.7.5.3.1;7.5.3.1 IRAK-M;172
6.7.5.3.2;7.5.3.2 TRAF1 and TRAF4;172
6.7.5.3.3;7.5.3.3 TANK;173
6.7.5.3.4;7.5.3.4 RIP3;173
6.7.5.3.5;7.5.3.5 A20;173
6.7.5.3.6;7.5.3.6 SOCS-1;174
6.7.5.3.7;7.5.3.7 Rab7b;175
6.7.6;7.6 Conclusion;175
6.7.7;References;175
6.8;8 Membrane Partitioning: Is Location Everything When It Comes to Endotoxin Recognition?;182
6.8.1;8.1 Introduction;183
6.8.2;8.2 The Innate Immune System;183
6.8.2.1;8.2.1 The Toll Like Receptor Family;184
6.8.2.2;8.2.2 Innate Immune Recognition of Bacterial Endotoxin or Lipopolysaccharide;185
6.8.2.3;8.2.3 Protein--Protein Interactions in Innate Immunity: PRRs Are Part of Multi-component Sensor Apparatuses;186
6.8.2.4;8.2.4 Is TLR4 Recruited in Membrane Microdomains Upon Ligand Engagement?;187
6.8.2.5;8.2.5 Does Membrane-Partitioning Play a Major Role in Protein Uptake and Intracellular Routing?;188
6.8.2.6;8.2.6 Concluding Remarks;189
6.8.3;References;190
7;Part II Infection, Treatment and Immunity;194
7.1;9 Endotoxin Detection from Limulus Amebocyte Lysate to Recombinant Factor C;195
7.1.1;9.1 General Introduction;196
7.1.2;9.2 Gram-Negative Bacterial Membrane A Wall of Fire;197
7.1.3;9.3 Lipopolysaccharide: A Mediator of Septic Shock Pathophysiological Properties;197
7.1.4;9.4 The Structure of LPS;198
7.1.4.1;9.4.1 The O-Specific Chain;198
7.1.4.2;9.4.2 The Core Oligosaccharide Domain;199
7.1.4.3;9.4.3 The Lipid A;200
7.1.5;9.5 Plasma LPS-Binding Proteins Protect and Provoke Septic Shock The Achilles Heel?;201
7.1.6;9.6 Overcoming the LPS Problem The Horseshoe Crab, a Creature Small and Great;204
7.1.7;9.7 Drawbacks with LAL;206
7.1.7.1;9.7.1 Differential Endotoxin Reactivities and Lack of Specificity;206
7.1.7.2;9.7.2 Problems with Sample and Specimen Preparations;207
7.1.7.3;9.7.3 LAL Production Endangers the Horseshoe Crab;207
7.1.8;9.8 Factor C: A Horseshoe Crab Serine Protease with Multiple High Affinity LPS-Binding Sites LPS Detection and Prevention Strategies Towards Non-LAL Based LPS Detection;208
7.1.9;9.9 Genetic Engineering and Production of Recombinant Factor C (rFC) Necessity Spawns Innovation: Cloning and Subcloning the Factor C cDNA into Bacterial, Yeast, Insect and Mammalian Cells;208
7.1.10;9.10 Development of a Quantitative Endotoxin Assay;209
7.1.11;9.11 Commercialization of the Endotoxin Detection Kit The Route to PyroGene and Pyrosense;210
7.1.12;References;211
7.2;10 The Role of Endotoxin in Infection: Helicobacter pylori and Campylobacter jejuni ;217
7.2.1;10.1 Introduction;218
7.2.1.1;10.1.1 Helicobacter pylori and Campylobacter jejuni Infections;218
7.2.1.2;10.1.2 Nature of H. pylori and C. jejuni Endotoxins;219
7.2.2;10.2 Structure and Properties of H. pylori and C. jejuni Lipid A Moieties;221
7.2.2.1;10.2.1 Structural Analysis of H. pylori Lipid A;221
7.2.2.2;10.2.2 Structural Analysis of C. jejuni Lipid A;223
7.2.2.3;10.2.3 Molecular and Supramolecular Basis for the Contrasting Immunological Activities of C. jejuni and H. pylori Lipid A Moieties;224
7.2.3;10.3 Relevance of Low Endotoxin and Lipid A Immuno-Activities to Chronic Infection: H. pylori as a Comparative Model;225
7.2.4;10.4 Molecular Mimicry in H. pylori Endotoxin;227
7.2.4.1;10.4.1 H. pylori Expression of Lewis (Le) and Blood Group Antigen Mimicry;227
7.2.4.2;10.4.2 Anti-Le Antibodies in Autoimmune Pathogenesis;229
7.2.4.2.1;10.4.2.1 Anti-Le Antibodies and the Inflammatory Response;229
7.2.4.2.2;10.4.2.2 Anti-Le Antibodies in Gastric Atrophy;230
7.2.5;10.5 Molecular Mimicry in C. jejuni Endotoxin;232
7.2.5.1;10.5.1 Expression of Gangliosiode Mimicry by C. jejuni;232
7.2.5.2;10.5.2 Pathogenic Anti-Ganglioside Antibodies and C. jejuni Ganglioside Mimicry;235
7.2.5.2.1;10.5.2.1 Pathogenic Anti-Ganglioside Antibodies in GBS;235
7.2.5.2.2;10.5.2.2 T-Cells in GBS Development;236
7.2.5.2.3;10.5.2.3 C. jejuni Ganglioside Mimicry and Anti-Ganglioside Antibodies;236
7.2.5.3;10.5.3 Relevance of Molecular Mimicry in the Pathogenesis of GBS;237
7.2.5.3.1;10.5.3.1 Galway Postulates;237
7.2.5.3.2;10.5.3.2 Experimental Models;238
7.2.6;10.6 Conclusions and Future Perspective;239
7.2.7;References;240
7.3;11 The Role of Pseudomonas Lipopolysaccharide in Cystic Fibrosis Airway Infection;249
7.3.1;11.1 Introduction;250
7.3.2;11.2 Cystic Fibrosis is an Important Disease of Children and Young Adults;250
7.3.2.1;11.2.1 Persistent Inflammation and Chronic Infection are the Hallmarks of CF Pulmonary Disease;251
7.3.2.2;11.2.2 P. aeruginosa Is an Important Pathogen in the CF Airway;252
7.3.2.3;11.2.3 Adaptation of P. aeruginosa to the Airway Is Important for CF Lung Disease;252
7.3.2.4;11.2.4 P. aeruginosa Lipid A Structures in CF Clinical Isolates are Distinct from Those Seen in Acute Clinical Infections and Isolates from the Environment;252
7.3.2.5;11.2.5 Synthesis of Cystic Fibrosis-Specific Lipid A Modifications in P. aeruginosa;255
7.3.2.6;11.2.6 P. aeruginosa Lipid A Modifications Promote CAP Resistance;256
7.3.2.7;11.2.7 P. aeruginosa Lipid A Modifications Modulate Host Inflammatory Responses;258
7.3.3;11.3 Conclusions;259
7.3.4;References;259
7.4;12 Development of Small-Molecule Endotoxin Sequestering Agents;262
7.4.1;12.1 Introduction;263
7.4.2;12.2 Endotoxin, the Trigger in Gram-Negative Sepsis;264
7.4.2.1;12.2.1 Host Responses to Endotoxin;264
7.4.2.2;12.2.2 Complexation of LPS by Macromolecules: A Failed Therapeutic Strategy?;267
7.4.2.3;12.2.3 The Paradigm of Non-Immunologic Sequestration of LPS by Small Molecules: A More Accessible Strategy?;267
7.4.3;12.3 Lipopolyamines as Endotoxin Sequestrants;269
7.4.3.1;12.3.1 Further SAR Lessons Learned En Route to DS-96, an N-Alkylhomospermine Lipopolyamine;275
7.4.3.2;12.3.2 Activity of DS-96 in Human Blood;279
7.4.3.3;12.3.3 In Vivo Potency, Pharmacodynamics and Pharmacokinetics of DS-96;279
7.4.3.4;12.3.4 Toxicity of DS-96;279
7.4.3.5;12.3.5 Pharmacokinetics of DS-96 and Further Developments;283
7.4.4;12.4 Conclusions and Future Prospects;284
7.4.5;References;285
7.5;13 Development of an Anti-Endotoxin Vaccine for Sepsis;291
7.5.1;13.1 Introduction;292
7.5.2;13.2 Endotoxin as a Therapeutic Target;292
7.5.3;13.3 Endotoxin Structure and Immunity;293
7.5.4;13.4 Initial Studies of Anti-LPS Core Antibodies as Therapy for Gram-Negative Bacterial Infections;295
7.5.4.1;13.4.1 Anti-Core LPS Antibody Levels;297
7.5.4.2;13.4.2 Anti-Lipid A Antibodies;297
7.5.5;13.5 Anti Core Monoclonal Antibodies;298
7.5.6;13.6 Development of J5 Subunit Vaccine;298
7.5.6.1;13.6.1 Initial Studies with Unadjuvanted Vaccine;299
7.5.6.2;13.6.2 J5 dLPS/OMP Vaccine and Adjuvants;301
7.5.7;13.7 Other Anti-Endotoxin Vaccines;301
7.5.8;13.8 Immunization Strategies with Anti-Endotoxin Vaccines;303
7.5.9;13.9 Other Potential Applications of Anti-Endotoxin Vaccine;303
7.5.10;References;304
7.6;14 Synthetic and Natural TLR4 Agonists as Safe and Effective Vaccine Adjuvants;309
7.6.1;14.1 Introduction;310
7.6.2;14.2 Immune Recognition of Lipopolysaccharide (LPS) and Related Molecules;314
7.6.3;14.3 Lipid A Structure and Activity;315
7.6.4;14.4 Formulation Effects on TLR4 Agonist Activity;317
7.6.5;14.5 Conclusion;322
7.6.6;References;323
7.7;15 Targeting Endotoxin in the Treatment of Sepsis;328
7.7.1;15.1 Introduction;329
7.7.2;15.2 Endotoxin and the Initiation of the Sepsis Cascade;329
7.7.3;15.3 Rationale for Targeting Endotoxin in Sepsis;330
7.7.4;15.4 Potential for Targeting Endotoxin in Sepsis;331
7.7.5;15.5 Anti-Endotoxin Antibodies;331
7.7.6;15.6 Vaccines;333
7.7.7;15.7 Endotoxin-Binding Peptides;333
7.7.7.1;15.7.1 Bactericidal/Permeability Increasing Protein;333
7.7.7.2;15.7.2 Human Lactoferrin;334
7.7.8;15.8 Lipid A Analog;334
7.7.9;15.9 Phospholipid Emulsion;335
7.7.10;15.10 Hemoperfusion Through a Polymixin B Embedded Cartridge;335
7.7.10.1;15.10.1 Animal Studies;336
7.7.10.2;15.10.2 Human Studies;337
7.7.11;15.11 Conclusion;338
7.7.12;References;338
7.8;16 Lipopolysaccharides in Rhizobium-Legume Symbioses;344
7.8.1;16.1 Introduction;345
7.8.2;16.2 Rhizobial Lipopolysaccharide Structures;347
7.8.2.1;16.2.1 Lipid A (LA) Structures;348
7.8.2.2;16.2.2 Core Oligosaccharide (COS) Structures;350
7.8.2.3;16.2.3 O-Chain Polysaccharide (OPS) Structures;354
7.8.3;16.3 Rhizobial Lipopolysaccharide Biosynthesis;359
7.8.3.1;16.3.1 LA Biosynthesis;359
7.8.3.2;16.3.2 Core Biosynthesis;364
7.8.3.3;16.3.3 O-Chain Polysaccharide Synthesis;366
7.8.4;16.4 Structural Modifications to Rhizobial LPSs During Symbiosis;371
7.8.4.1;16.4.1 Modifications to the O-Chain Polysaccharide During Symbiosis;372
7.8.4.2;16.4.2 Modifications to the Core Oligosaccharide During Symbiosis;376
7.8.4.3;16.4.3 Modifications to the LA During Symbiosis;376
7.8.5;16.5 Rhizobial Lipopolysaccharide Function;377
7.8.5.1;16.5.1 The Symbiotic Function of the Unique Structural Features and Modifications of Rhizobial Lipopolysaccharides;377
7.8.5.2;16.5.2 Rhizobial Lipopolysaccharide, Symbiosis, and the Plant Defense Response;380
7.8.6;References;382
7.9;17 Lipopolysaccharides and Plant Innate Immunity;392
7.9.1;17.1 Introduction;393
7.9.2;17.2 LPS as a M394
7.9.2.1;17.2.1 LPS as a Direct Inducer of Basal Plant Defenses;394
7.9.2.2;17.2.2 LPS as a Primer of Plant Defense Response Induction;395
7.9.2.3;17.2.3 LPS can Modulate the Hypersensitive Response, a Programmed Cell Death Associated with Resistance;395
7.9.2.4;17.2.4 LPS Induces Systemic Effects in Plants;396
7.9.3;17.3 Different Sub-Structures Within LPS can Act as MAMPs;397
7.9.4;17.4 Structural Variations in LPS Influence its Activity in Plants;398
7.9.5;17.5 Subversion of LPS-Induced Effects;399
7.9.6;17.6 Perception of LPS by Plants;399
7.9.6.1;17.6.1 SNARE Proteins, Vesicle Trafficking and Plant Defense;400
7.9.6.2;17.6.2 A Role for the Syntaxin PEN1 in LPS Signalling in Plants?;401
7.9.7;17.7 Concluding Remarks;403
7.9.8;References;404
8;Index;409



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.