Wang / Li | The Mathematical Foundation of Multi-Space Learning Theory | Buch | 978-1-032-70702-0 | sack.de

Buch, Englisch, 136 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 222 g

Wang / Li

The Mathematical Foundation of Multi-Space Learning Theory


1. Auflage 2025
ISBN: 978-1-032-70702-0
Verlag: Routledge

Buch, Englisch, 136 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 222 g

ISBN: 978-1-032-70702-0
Verlag: Routledge


This book explores the measurement of learning effectiveness and the optimization of knowledge retention by modeling the learning process and building the mathematical foundation of multi-space learning theory.

Multi-space learning is defined in this book as a micro-process of human learning that can take place in more than one space, with the goal of effective learning and knowledge retention. This book models the learning process as a temporal sequence of concept learning, drawing on established principles and empirical evidence. It also introduces the matroid to strengthen the mathematical foundation of multi-space learning theory and applies the theory to vocabulary and mathematics learning, respectively. The results show that, for vocabulary learning, the method can be used to estimate the effectiveness of a single learning strategy, to detect the mutual interference that might exist between learning strategies, and to predict the optimal combination of strategies. In mathematical learning, it was found that timing is crucial in both first learning and second learning in scheduling optimization to maximize the intersection effective interval.

The title will be of interest to researchers and students in a wide range of areas, including educational technology, learning sciences, mathematical applications, and mathematical psychology.

Wang / Li The Mathematical Foundation of Multi-Space Learning Theory jetzt bestellen!

Zielgruppe


Academic, Postgraduate, Undergraduate Advanced, and Undergraduate Core


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction on Multi-Space Learning 2. Partition Spaces to Optimize Learning Effectiveness 3. Matroid Theory 4. Current Foundations of Learning Sciences 5. Applications in Vocabulary Learning 6. Applications in Math Learning 7. Summary


Tai Wang is a professor affiliated with the Faculty of Artificial Intelligence in Education at the Central China Normal University, China. His research interests include educational technologies, internet psychology, and natural language processing. One major topic of his research is learning environment constructions.

Mengsiying Li is a PhD candidate at the National Engineering Research Center for E-Learning, Central China Normal University, China, whose research focuses on learning spaces, strategies, and behavior.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.