Buch, Englisch, 180 Seiten, Format (B × H): 161 mm x 242 mm, Gewicht: 1010 g
Buch, Englisch, 180 Seiten, Format (B × H): 161 mm x 242 mm, Gewicht: 1010 g
Reihe: Advances in Information Security
ISBN: 978-0-387-46273-8
Verlag: Springer Us
Preserving Privacy for On-Line Analytical Processing addresses the privacy issue of On-Line Analytic Processing (OLAP) systems. OLAP systems usually need to meet two conflicting goals. First, the sensitive data stored in underlying data warehouses must be kept secret. Second, analytical queries about the data must be allowed for decision support purposes. The main challenge is that sensitive data can be inferred from answers to seemingly innocent aggregations of the data. This volume reviews a series of methods that can precisely answer data cube-style OLAP, regarding sensitive data while provably preventing adversaries from inferring data.
Preserving Privacy for On-Line Analytical Processing is appropriate for practitioners in industry as well as graduate-level students in computer science and engineering.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Technische Informatik Externe Speicher & Peripheriegeräte
- Mathematik | Informatik EDV | Informatik Technische Informatik Systemverwaltung & Management
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Technische Informatik Netzwerk-Hardware
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
Weitere Infos & Material
OLAP and Data Cubes.- Inference Control in Statistical Databases.- Inferences in Data Cubes.- Cardinality-based Inference Control.- Parity-based Inference Control for Range Queries.- Lattice-based Inference Control in Data Cubes.- Query-driven Inference Control in Data Cubes.- Conclusion and Future Direction.