E-Book, Englisch, Band 5, 387 Seiten
Reihe: Fractional Calculus in Applied Sciences and EngineeringISSN
Wang / Feckan / Feckan Fractional Hermite-Hadamard Inequalities
1. Auflage 2018
ISBN: 978-3-11-052244-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band 5, 387 Seiten
Reihe: Fractional Calculus in Applied Sciences and EngineeringISSN
ISBN: 978-3-11-052244-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus.
Contents
Introduction
Preliminaries
Fractional integral identities
Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
Hermite-Hadamard inequalities involving Hadamard fractional integrals
Zielgruppe
Researchers and graduates in applied mathematicis and engineering
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Content:
Chapter 1 Introduction
1.1 Fractional Calculus via Application and Computation
1.2 Motivation of Fractional Hermite-Hadamard’s Inequality
1.3 Main Contents
Chapter 2 Preliminaries
2.1 Definitions of Special Functions and Fractional Integrals
2.2 Definitions of Convex Functions
2.3 Singular Integrals via Series
2.4 Elementary Inequalities
Chapter 3 Fractional Integral Identities
3.1 Identities involving Riemann-Liouville Fractional Integrals
3.2 Identities involving Hadamard Fractional Integrals
Chapter 4 Hermite-Hadamard’s inequalities involving Riemann-Liouville fractional integrals
4.1 Inequalities via Convex Functions
4.2 Inequalities via r-Convex Functions
4.3 Inequalities via s-Convex Functions
4.4 Inequalities via m-Convex Functions
4.5 Inequalities via (s, m)-convex Functions
4.6 Inequalities via Preinvex Convex Functions
4.7 Inequalities via (ß,m)-geometrically Convex Functions
4.8 Inequalities via geometrical-arithmetically s-Convex Functions
4.9 Inequalities via (a,m)-logarithmically Convex Functions
4.10 Inequalities via s-GodunovaLevin functions
4.11 Inequalities via AG(log)-convex Functions
Chapter 5 Hermite-Hadamard’s inequalities involving Hadamard fractional integrals
5.1 Inequalities via Convex Functions
5.2 Inequalities via s-e-ondition Functions
5.3 Inequalities via geometric-geometric co-ordinated Convex Function
5.4 Inequalities via Geometric-Geometric-Convex Functions
5.5 Inequalities via Geometric-Arithmetic-Convex Functions
References