Wang | Dose-exposure-response Modeling | Buch | 978-1-032-59625-9 | sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Wang

Dose-exposure-response Modeling

Methods and Practical Implementation
2. Auflage 2026
ISBN: 978-1-032-59625-9
Verlag: Taylor & Francis Ltd

Methods and Practical Implementation

Buch, Englisch, 384 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-032-59625-9
Verlag: Taylor & Francis Ltd


This thoroughly revised and updated new edition reflects the progress that has been made in dose-exposure-response (DER) modelling. As the title suggests, the new edition covers more topics on dose and dose adjustment. A large part of the book has been rewritten, including an updated Bayesian analysis and modeling chapter with new materials on approximate Bayesian modeling with misspecified models, Bayesian bootstrap for the ”cut-the-feedback” approach and meta-regression with Stan codes for implementation. Two new chapters in this edition include one on causal DER modeling, with an introduction to the concept of causal DER relationship, approaches such as the generalized propensity score and instrumental/control function approaches for adjustment for observed and unobserved confounders, and Bayesian causal DER modeling. Another new chapter is dedicated to learning DER relationships with the concept and methods of machine learning, including applications to adaptive dose finding trials by bandits, contextual bandits and Thompson sampling with Bayesian bootstrap, adaptive control for tracking using a dynamic model with an application for individual warfarin dosing. The new appendix contains non-standard materials used in the book.

Applied statisticians and modelers can find details on how to implement new approaches while researchers can find topics for or applications of their work. In addition, students can see how complicated methodology and models are applied to practical situations.

Key Features:

· Provides SAS, R and Stan codes that will enable readers to test the approaches in their own scenarios.

· Gives a systematic treatment of concepts and methodology.

· Helps with understanding concepts and evaluating the performance of new methods, particularly those in Chapters 7, 8 and 9.

· Includes a large amount of R codes for methods introduced in the new materials in chapters on Bayesian analyses, causal inference, and dose-adjustment.

· Includes simulation to show how some complex methods such as generalized propensity score adjustment and adaptive dose adjustment can be implemented with simple codes.

Wang Dose-exposure-response Modeling jetzt bestellen!

Zielgruppe


Professional Practice & Development, Professional Reference, and Professional Training


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction 2 Basic exposure and exposure-response models 3 Dose-exposure and exposure-response models for longitudinal data 4 Sequential and simultaneous dose-exposure-response modeling 5 Exposure-risk modeling for time-to-event data 6 Modeling dynamic dose-exposure-response relationship 7 Bayesian dose-exposure-response modeling 8 Causal dose-exposure-response analysis  9 Learning dose-exposure-response relationships: dose allocation and optimization 10 Appendices Index


Jixian Wang is a statistical methodologist in Bristol Myers Squibb, Switzerland. He has worked on drug development for over twenty years and was an academic researcher before joining the pharmaceutical industry. His research interests include statistical methodology and its applications to real problems in pharmaceuticals, including exposure-safety, PKPD modeling, treatment/dose selection, health economics, benefit-risk and health technology assessments, and optimal trial design with 60+ publications on peer-reviewed journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.