Buch, Englisch, 152 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 523 g
Buch, Englisch, 152 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 523 g
Reihe: Advances in Oil and Gas Exploration & Production
ISBN: 978-3-031-75744-0
Verlag: Springer Nature Switzerland
The book delves into seismic data representation and enhancement issues, ranging from seismic acquisition design to subsequent quality improvement and compression technologies. Given the challenges of obtaining suitable labeled training datasets for seismic data processing problems, we concentrate on exploring deep learning approaches that eliminate the need for labels. We combined novel deep learning techniques with conventional seismic data processing methods, and construct networks and frameworks tailored for seismic data processing. The editors and authors of this book come from both academia and industry with hands-on experiences in seismic data processing and imaging.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Naturwissenschaften Physik Angewandte Physik Geophysik
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
Weitere Infos & Material
Chapter 1: Introduction.- Chapter 2: Full Waveform Inversion With Low-Frequency Extrapolation.- 3: Deep Learning For Seismic Deblending.- Chapter 4: Blind-Trace Network For Self-Supervised Seismic Data Interpolation.- Chapter 5: Self-Supervised Learning For Anti-Aliased Seismic Data Interpolation Using Dip Information.- Chapter 6:Deep Learning For Seismic Data Compression.- Chapter 7: Conclusion.