E-Book, Englisch, 176 Seiten, eBook
Wang Bounded Dynamic Stochastic Systems
2000
ISBN: 978-1-4471-0481-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Modelling and Control
E-Book, Englisch, 176 Seiten, eBook
Reihe: Advances in Industrial Control
ISBN: 978-1-4471-0481-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A new representation of dynamic stochastic systems is produced by using B-spline functions to descripe the output p.d.f. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Preliminaries.- 1.1 Introduction.- 1.2 An example: flocculation model.- 1.3 The aim of the new development.- 1.4 The structure of the book.- 1.5 Random variables and stochastic processes.- 1.5.1 Random variables and their distribution functions.- 1.5.2 Mean and variance.- 1.5.3 Random vector.- 1.5.4 Conditional mean.- 1.6 Stochastic processes.- 1.7 Some typical distributions.- 1.7.1 Gaussian distribution.- 1.7.2 Uniform distribution.- 1.7.3 ? distribution.- 1.8 Conclusions.- 2 Control of SISO Stochastic Systems: A Fundamental Control Law.- 2.1 Introduction.- 2.2 Preliminaries on B-splines artificial neural networks.- 2.3 Model representation.- 2.3.1 Static models.- 2.3.2 Dynamic models.- 2.4 System modelling and parameter estimation.- 2.4.1 Modelling of static systems.- 2.4.2 Modelling of linear dynamic systems.- 2.5 Control algorithm design.- 2.5.1 Control algorithm for static systems.- 2.5.2 Control algorithm for linear dynamic systems.- 2.5.3 Constraints on input energy for dynamic systems.- 2.6 Discussions.- 2.6.1 Adaptive control.- 2.6.2 Modelling and control of time delay systems.- 2.6.3 On-line measurement of Vk.- 2.6.4 Controllability, observability and stability.- 2.7 Examples.- 2.7.1 Static system modelling.- 2.7.2 A design example for dynamic systems.- 2.8 Conclusions.- 3 Control of MIMO Stochastic Systems: Robustness and Stability.- 3.1 Introductionx.- 3.2 Model representation.- 3.2.1 State space form.- 3.2.2 The input-output form.- 3.3 The controller using V(k).- 3.3.1 Measurement of V(k).- 3.3.2 Feedback control using V(k).- 3.3.3 Stability issues.- 3.4 The controller using f(y, U(k)).- 3.4.1 The formulation of control algorithm.- 3.4.2 Stability issues.- 3.5 An illustrative example.- 3.5.1 Control algorithm design.- 3.5.2 Simulation results.- 3.6 Conclusions and discussions.- 4 Realization of Perfect Tracking.- 4.1 Introduction.- 4.2 Preliminaries and model representation.- 4.3 Main result.- 4.4 Simulation results.- 4.4.1 Controller design.- 4.4.2 Simulation results.- 4.5 An LQR based algorithm.- 4.6 Conclusions.- 5 Stable Adaptive Control of Stochastic Distributions.- 5.1 Introduction.- 5.2 Model representation.- 5.3 On-line estimation and its convergence.- 5.4 Adaptive control algorithm design.- 5.5 Stability analysis.- 5.6 A simulated example.- 5.7 Conclusions.- 6 Model Reference Adaptive Control.- 6.1 Introduction.- 6.2 Model representation.- 6.3 An adaptive controller design.- 6.3.1 Construction of the reference model.- 6.3.2 Construction of error dynamics.- 6.4 Adaptive tuning rules for K(t) and Q(t).- 6.5 Robust adaptive control scheme.- 6.5.1 Control scheme when ?(t) ? 0.- 6.5.2 Control scheme when both e0 and ? are present.- 6.6 A case study.- 6.7 Conclusions and discussions.- 7 Control of Nonlinear Stochastic Systems.- 7.1 Introduction.- 7.2 Model representation.- 7.3 Control algorithm design.- 7.4 Stability issues.- 7.5 A neural network approach.- 7.5.1 Training of the neural networks.- 7.5.2 A linearised control algorithm.- 7.6 Two examples.- 7.7 Calculation of ?.- 7.8 Conclusions.- 8 Application to Fault Detection.- 8.1 Introduction.- 8.2 Model representation.- 8.3 Fault detection.- 8.3.1 Fault detection for static systems.- 8.3.2 Dynamic systems.- 8.3.3 Fault detection signal.- 8.4 An adaptive diagnostic observer.- 8.5 Discussions.- 8.6 An identification based FDD.- 8.7 Fault diagnosis.- 8.7.1 The algorithm.- 8.7.2 An applicability study.- 8.8 Discussions and conclusions.- 9 Advanced Topics.- 9.1 Introduction.- 9.2 Square root models.- 9.3 Control algorithm design.- 9.3.1 Finding weights from ?(y, u(k)).- 9.3.2 The control algorithm.- 9.4 Simulations.- 9.5 Continuous-time models.- 9.6 The control algorithm.- 9.7 Control of the mean and variance.- 9.7.1 The control of output mean value.- 9.7.2 The control of output variance.- 9.8 Singular stochastic systems.- 9.8.1 Model representation.- 9.8.2 Control algorithm design.- 9.9 Pseudo ARMAX systems.- 9.10 Filtering issues.- 9.11 Conclusions.- References.




