Wang / Bengler / Jiang | Green Intelligent Transportation Systems | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 419, 1037 Seiten

Reihe: Lecture Notes in Electrical Engineering

Wang / Bengler / Jiang Green Intelligent Transportation Systems

Proceedings of the 7th International Conference on Green Intelligent Transportation System and Safety
1. Auflage 2018
ISBN: 978-981-10-3551-7
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 7th International Conference on Green Intelligent Transportation System and Safety

E-Book, Englisch, Band 419, 1037 Seiten

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-981-10-3551-7
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



These proceedings collect selected papers from the 7th International Conference on Green Intelligent Transportation System and Safety held in Nanjing on July 1-4, 2016. The selected works, which include state-of-the-art studies, are intended to promote the development of green mobility and intelligent transportation technology to achieve interconnectivity, resource sharing, flexibility and higher efficiency. They offer valuable insights for researchers and engineers in the fields of Transportation Technology and Traffic Engineering, Automotive and Mechanical Engineering, Industrial and System Engineering, and Electrical Engineering.


Wang / Bengler / Jiang Green Intelligent Transportation Systems jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;1 A New Method for 3D-Simulating Traffic Accident Based on VISSIM;13
2.1;Abstract;13
2.2;Introduction;13
2.3;General Technical Route;14
2.4;Modeling Method for Key Issues;14
2.4.1;Modeling 3D Element;14
2.4.2;Framework for Simulation System;16
2.4.3;Vehicle Trajectory and Process Control;20
2.4.4;Crash Effects Design;20
2.4.5;Traffic Environment Design;22
2.5;Case Application;23
2.6;Conclusions;23
2.7;Acknowledgements;23
2.8;References;23
3;2 True 3D Surface Feature Visualization Design and Realization with MapGIS K9;25
3.1;Abstract;25
3.2;Introduction;25
3.3;Technology Routine for True 3D Visualization of Surface Features;26
3.4;Production of True 3D Virtual Scene of Surface Features;28
3.5;Spatial Analysis of True 3D Visualized Campus;36
3.6;Roaming in the True 3D Visualized Campus;37
3.7;Conclusion;38
3.8;Acknowledgments;38
3.9;References;38
4;3 ‘Discontinuity Effect’ of Edge Line Markings on Time Headway in Car-Following;40
4.1;Abstract;40
4.2;Introduction;41
4.3;Literature Review;41
4.4;Method and Experiment;43
4.4.1;Methods Overview;43
4.4.2;Test Site;43
4.4.3;Design of Edge Line Markings;44
4.4.3.1;Horizontal Offset (HOS);44
4.4.3.2;Longitudinal Gap (LG);44
4.4.4;Data Collection and Treatment;44
4.4.5;Data Filtering Process;47
4.4.5.1;Filter Out Free-Flow Vehicles;47
4.4.5.2;Filter Out Lane-Change Vehicles;48
4.5;Results;48
4.5.1;Effects of HOS;48
4.5.2;Effects of LG;50
4.5.3;Comparison with the Control Test;50
4.6;Discussions;50
4.6.1;Analysis of Speed and Speed Perception;52
4.6.2;Analysis of Distance Headway and Distance Perception;53
4.7;Conclusions and Recommendations;55
4.8;Acknowledgements;55
4.9;References;55
5;4 Study on the Influence on Liquid Sloshing Caused by Baffle’s Parameter Changes in Tank;57
5.1;Abstract;57
5.2;Introduction;57
5.3;The Influence of the Number of Baffles on Liquid Sloshing in Circle Cross-sectional Tank;58
5.4;The Influence of Vertical Baffles on Liquid Sloshing;60
5.4.1;Liquid Simulational Experiment in Tank When the Area of Baffles is 46% of the Cross-sectional Area of Tank;60
5.4.2;Liquid Simulational Experiment in Tank When the Area of Baffles is 20% of the Cross-sectional Area of Tank;67
5.5;Three Baffles are Interlaced;70
5.6;Conclusions;72
5.7;References;72
6;5 Research on the Collaborative Management and Information Service System of Comprehensive Passenger Transportation Hub;73
6.1;Abstract;73
6.2;Introduction;73
6.3;System Framework Design;74
6.3.1;Physical Place Layer;76
6.3.2;Infrastructure Support Environment Layer;76
6.3.3;Data Resources Layer;76
6.3.4;Application System Layer;76
6.3.5;Application Service Presentation Layer;76
6.3.6;User Layer;77
6.3.7;Security System Layer;77
6.4;Application System Design;77
6.4.1;Hub Transfer Guide and Integrated Information Service System;77
6.4.2;Hub Daily Monitoring and Linkage Support System;78
6.4.3;The Hub Area Traffic Guidance System;79
6.4.4;Energy Management and Control System;79
6.4.5;Evacuation Guidance and Emergency Management System;79
6.4.6;Hub Statistical Analysis System;79
6.4.7;Hub Integrated Information Management Platform;80
6.5;System Function Module Design;80
6.5.1;Hub Transfer Guide and Integrated Information Service System;80
6.5.2;Hub Daily Monitoring and Linkage Support System;80
6.5.3;The Hub Area Traffic Guidance System;81
6.5.4;Energy Management and Control System;82
6.5.5;Evacuation Guidance and Emergency Management System;83
6.5.6;Hub Statistical Analysis System;83
6.5.7;Hub Integrated Information Management Platform;84
6.6;Conclusions and Recommendations;84
6.7;References;85
7;6 Decision-Making Model of Lane-Change Behavior Based on Integrated Cognitive Vehicle Cluster Situations;86
7.1;Abstract;86
7.2;Introduction;87
7.3;Analysis of Vehicle Cluster Situation and Lane Changing;88
7.3.1;Vehicle Cluster Situation;88
7.3.2;Lane Changing;89
7.4;Decision-Making Model of Lane Changing Based on Integrated Cognitive of Vehicle Cluster Situation;90
7.4.1;Fuzzy Variables and Corresponding Fuzzy Sets;90
7.4.2;Lane-Changing Decision-Making Based on Integrated Cognitive Vehicle Cluster Situation;93
7.5;Data Collection and Model Validation;98
7.5.1;Identification of the Driver’s Propensity;98
7.5.2;Actual Vehicle Verification;98
7.5.3;Model Calibration;100
7.5.4;Model Verification;101
7.6;Conclusion;102
7.7;Acknowledgements;103
7.8;References;103
8;7 Novel Design of Head-Up Display System Based on Safety Control;104
8.1;Abstract;104
8.2;Introduction;104
8.3;Methodology and Results;106
8.4;Architecture Design of the HUD System;108
8.5;Interface Design of the HUD System;110
8.6;Conclusion;111
8.7;References;112
9;8 Prediction Model on Energy Consumption of Highway Transportation in Inner Mongolia Based on ARMA;113
9.1;Abstract;113
9.2;Introduction;113
9.3;ARMA Model;114
9.3.1;The Form of ARMA Model;114
9.3.2;The Modeling Process Based on ARMA Model;115
9.4;Energy Consumption Prediction Model of Highway Transportation;116
9.5;Unit Energy Consumption Prediction;119
9.6;Conclusions;122
9.7;References;122
10;9 Revenue Model for the Inter-City Railway System Based on the Stop Stations and Graded Ticket Fares;123
10.1;Abstract;123
10.2;Introduction;124
10.3;Travel Behavior Selection Process for Passengers;124
10.4;Model of Sharing Ratio;125
10.5;Model;126
10.5.1;Research Scope;126
10.5.2;Variable Definition;127
10.5.3;Passenger Flow Transformation Equation;127
10.5.4;Objective Function;128
10.5.5;Constraint Conditions;128
10.5.5.1;Limitation on the Transportation Capacity of the Section;128
10.5.5.2;Limitation on the Traffic Capacity of the Station;129
10.5.5.3;Limitation on the Ticket Fare Adjustment Policy;129
10.5.5.4;Limitation on the Parking Coverage;130
10.5.5.5;Limitation on the Maximum Parking Number of the Station;130
10.6;Solution Algorithm;130
10.7;Case Analysis;132
10.8;Conclusion;135
10.9;Acknowledgments;135
10.10;References;135
11;10 Four-Phase Composite Material of Concrete Meso-Damage Dynamic Load Failure Test;136
11.1;Abstract;136
11.2;Introduction;137
11.3;Establishment of Concrete Elasto-Plastic Damage Constitutive Model;138
11.3.1;Realization of the Elastic-Plastic Damage Constitutive Equation of Mesoscopic Element;138
11.3.2;Establishment of Concrete Random Defects;138
11.4;Concrete Failure Test Under Static And Dynamic Loads;139
11.4.1;Establishment of Numerical Sample of Concrete Beam;139
11.4.2;Concrete Failure Test Under the Static Load;140
11.4.3;Concrete Failure Test Under the Dynamic Load of I;141
11.4.4;Concrete Failure Test Under the Dynamic Load of II;143
11.4.5;Damage Test of Concrete Beam Column;144
11.5;Conclusion;147
11.6;References;148
12;11 Influence of Working Vehicles on Traffic Operation in Regional Road Networks Based on Microscopic Traffic Simulation;149
12.1;Abstract;149
12.2;Introduction;150
12.2.1;Literature Review;151
12.3;Objectives and Contributions;152
12.4;Research Method;153
12.4.1;Research Approach;153
12.4.2;Simulation Methodology;153
12.4.2.1;Paramics Modeler Module;154
12.4.2.2;Data Analysis Module;155
12.5;Case Study;156
12.5.1;Network Descriptions;156
12.5.2;Network Traffic Delay Analysis;158
12.5.2.1;Traffic Delay Caused by Working Vehicle’s Speed and Driving Lane;158
12.5.2.2;Traffic Delay Caused by Working Vehicle’s Operation Time;161
12.5.3;Road Segment Safety Analysis Based on Speed Variance as Surrogate;162
12.5.3.1;Analysis of Six Representative Links Safety Under Different Working Strategy;163
12.5.3.2;The Difference Analysis of Links Accident Risk Compared with no Working Vehicle;165
12.6;Conclusion;167
12.7;Acknowledgements;168
12.8;References;168
13;12 Research on Comparison of Tram with BRT;170
13.1;Abstract;170
13.2;Introduction;170
13.3;Transportation Capability;171
13.4;Velocity;172
13.4.1;Maximum Operating Speed;172
13.4.2;Acceleration and Deceleration;173
13.4.3;Intersection Priority;173
13.4.4;Stop Time on Station;173
13.5;Economical Efficiency;174
13.6;Energy Consumption;176
13.6.1;Influence of Speed on the Unit Energy Consumption;176
13.6.2;Influence of Load Factor on the Unit Energy Consumption;177
13.7;Conclusion;178
13.8;References;178
14;13 Analysis of Speed Characteristics of Different Types of Drivers at a Certain Cruise Speed;180
14.1;Abstract;180
14.2;Introduction;180
14.3;Driver Sample Data Processing Method;181
14.3.1;Driver Sample Clustering Process;181
14.3.2;Least Squares Fitting of Statistical Parameters;184
14.4;Analysis of Driving Speed Change in the Cruise Conditions;185
14.5;Analysis of Velocity Frequency Distribution of Different Types of Drivers in the Cruise Conditions;188
14.6;Analysis of Relative Velocity Distribution of Different Types of Drivers in the Cruise Conditions;188
14.7;Summary;190
14.8;Acknowledgements;191
14.9;References;191
15;14 A Research on Traffic Conflicts Between Vehicle and Pedestrian on Urban Typical Road Section;192
15.1;Abstract;192
15.2;Introduction;192
15.3;Method;193
15.3.1;Conflicts Types;193
15.3.2;Conflicts Data;194
15.4;Data Analysis;194
15.4.1;Analysis of Individual Driving Behavior;194
15.4.2;Analysis of Individual Pedestrian Crossing Behavior;195
15.4.3;Analysis of Conflict Samples;195
15.5;Result;197
15.5.1;Pedestrian Conflict Features;197
15.5.2;Vehicle Conflict Features;198
15.6;Discussion;198
15.7;Conclusion;199
15.8;Acknowledgements;200
15.9;References;200
16;15 Automotive Fire Simulation Based on Pyrosim;201
16.1;Abstract;201
16.2;Introduction;201
16.3;Constructing Automotive Fire Model;202
16.3.1;Mesh;202
16.3.2;Materials;202
16.3.3;Surface;203
16.3.4;Fire;203
16.3.5;Obstruction;203
16.3.5.1;Tiny Elements Construction;204
16.3.5.2;Copy and Rotation;204
16.3.5.3;Import the File in dwf;205
16.3.6;Device;206
16.3.7;Slice of Temperature;206
16.3.8;Parameters;206
16.3.9;Model;206
16.4;Analysis of Simulation Results;207
16.4.1;The Result of the Smoke Detector;207
16.4.2;The Results of the Thermocouples;208
16.4.3;The Results of the Temperature Slice;210
16.5;Conclusion;213
16.6;References;213
17;16 Passenger Flow Distribution Model Under the Interruption of Urban Rail Transit Network;215
17.1;Abstract;215
17.2;Introduction;215
17.3;Factors Influencing Stranded Passengers’ Route Selection in Urban Rail Transit;216
17.4;NL Model of Passenger Flow Redistribution;218
17.4.1;Random Utility Theory;218
17.4.2;NL Model Establishment;218
17.5;Applied Case;220
17.5.1;SP Survey;220
17.5.2;Determination of Characteristic Variables and Utility Functions;221
17.5.3;Parameter Calibration and Test;222
17.6;Conclusions;224
17.7;Acknowledgements;224
17.8;References;224
18;17 Path Selection Research with Digestion Index;226
18.1;Abstract;226
18.2;Introduction;226
18.3;Network Description;227
18.4;Traffic Dynamic;227
18.5;Path Selection;228
18.6;Conclusion;232
18.7;Acknowledgements;232
18.8;References;232
19;18 Dynamic Timetables Optimization Method of Regional Public Transit Under APTS;234
19.1;Abstract;234
19.2;Introduction;234
19.3;Strategy for Bus Scheduling Based on Dynamic Operation Timetables;236
19.4;Defining the Model;237
19.4.1;Basic Assumption;238
19.4.2;Modeling;239
19.5;Parameter Calibration;240
19.5.1;Determining the Weight of Lines;240
19.5.2;Determining the Weight of Transfer Stations;240
19.5.3;Determining the Weight of Various Kinds of Waiting Time;241
19.5.4;Determining the Upper and Lower Limits of Variables;241
19.6;Solving Model;241
19.7;Example Analysis;244
19.7.1;Example Designing;244
19.7.2;Result Analysis;244
19.8;Conclusion;247
19.9;References;247
20;19 Study on the Low-Carbon Operating Evaluation Model in Expressway Rest Area;249
20.1;Abstract;249
20.2;Introduction;249
20.3;The Connotation of Low-Carbonization Management of Expressway Service Area;250
20.3.1;Expressway Service Area;250
20.3.2;Low-Carbonization Management of Expressway Service Area;250
20.4;The Low-Carbon Operation Evaluation System of Expressway Service Area;251
20.4.1;The Evaluation Framework Building of Low Carbon Operated in SERVICE Area;251
20.4.2;Evaluation Index and Quantification of Service Area;253
20.5;Evaluation Method of Low-Carbon Operation to Freeway Service Zone;255
20.5.1;Weight of Index Obtained by AHP Method;255
20.5.2;Low-Carbon Operation Evaluation of Service Areas Based on TOPSIS;257
20.6;Application;258
20.6.1;Determination the Weight of Indicators Based on AHP;258
20.6.2;Low-Carbon Evaluation of Three Service Areas Based on TOPSIS;259
20.7;Conclusion;262
20.8;References;263
21;20 An Analysis of the Taxi-Sharing Organizing and Pricing;264
21.1;Abstract;264
21.2;Introduction;265
21.3;Literature Review;266
21.4;The Taxi-sharing Matching and Route Choice Model;267
21.4.1;The Based Taxi-sharing Matching and Route Choice Model;267
21.4.2;The Improved Taxi-sharing Matching and Route Choice Model;269
21.5;The Taxi-sharing Pricing Method;270
21.5.1;The Equity Issue of the Fare Allocation;270
21.5.1.1;The Payment in Turn;271
21.5.1.2;The Payment Based on the Number of Passengers;271
21.5.1.3;The Payment Based on the Travel Distance;271
21.5.1.4;The Payment Considering the Waiting Time;272
21.5.2;The Generalized Pricing Method of the Taxi Sharing;272
21.6;Suggestions;273
21.6.1;The Taxi-sharing Organizing Assisted by a Company/Agent;274
21.6.2;The Call-a-Ride Used by the Driver and the Passenger;274
21.7;Conclusion and Future Research;274
21.8;Acknowledgments;275
21.9;References;275
22;21 Analyzing the Influences of Driver Distractions Based on Driver’s Subjective Cognition;278
22.1;Abstract;278
22.2;Introduction;278
22.3;Methods;279
22.3.1;Questionnaire Design;279
22.3.2;Procedure;280
22.3.3;Respondents;280
22.3.4;Reliability and Validity Analysis;281
22.4;Results and Discussion;281
22.4.1;The Frequency and Severity of Driver Distractions;281
22.4.2;Driver Personal Characteristics in the Frequency of Driver Distractions;283
22.4.2.1;Driver Distraction by Gender and Profession;283
22.4.2.2;Driver Distraction by Age;284
22.4.2.3;Driver Distraction by Driving Experience;287
22.4.3;The Classification of Driver Distractions;287
22.5;Conclusion;291
22.6;References;292
23;22 Origin-Destination Distribution Prediction Model for Public Bicycles Based on Rental Characteristics;294
23.1;Abstract;294
23.2;Introduction;294
23.3;OD Distribution Prediction Model;296
23.3.1;General Form of the Doubly Constrained Gravity Model;296
23.3.2;Distribution Impedance Function;297
23.3.3;Algorithm Design;298
23.4;Model Testing;298
23.5;Conclusion;303
23.6;Acknowledgements;304
23.7;References;304
24;23 Study on Selection Methods of Speed Control Measures for Low Grade Roads in Rural–Urban Fringe;305
24.1;Abstract;305
24.2;Introduction;305
24.3;Selection of Speed Control Measures;307
24.3.1;Applicability of Speed Control Measures;307
24.3.2;Suggested Countermeasures of Speed Control on Special Segments;309
24.3.2.1;Segments with Bad Linearity and Segments Crossing Villages and Towns;310
24.3.2.2;Abrupt Change of Road Cross-Section;310
24.3.2.3;Non-signal Control Intersection and Pedestrian Crosswalk;310
24.3.2.4;Regions Near Access Entry;312
24.4;Case Study;313
24.4.1;Overview About the Segment;313
24.4.2;Field Survey;313
24.4.3;Selection of Speed Control Measures;314
24.5;Conclusion;315
24.6;Acknowledgements;315
24.7;References;316
25;24 Effects of Driver Fatigue and Road Curvature on Steering Wheel Angle;317
25.1;Abstract;317
25.2;Introduction;317
25.3;Method;318
25.3.1;Subjects;318
25.3.2;Driving Simulator;319
25.3.3;Experimental Procedure;319
25.3.4;Recorded Variables;320
25.4;Data Classification;320
25.4.1;Face Video Data Classification;320
25.4.2;Road Video Data Classification;321
25.4.3;Steering Wheel Angle Data Classification;321
25.5;Results;321
25.5.1;Mean Steering Wheel Angle;321
25.5.1.1;Effects of Road Curvature;321
25.5.1.2;Effects of Driver Fatigue;323
25.5.2;Standard Deviation of Steering Angle;323
25.5.2.1;Effects of Road Curvature;323
25.5.2.2;Effects of Driver Fatigue;324
25.5.3;Coefficient of Variation of Steering Angle;324
25.6;Discussion;324
25.7;Acknowledgements;326
25.8;References;326
26;25 Requirements Analysis of Operation Monitoring for Electric Vehicle in Transportation Industry;329
26.1;Abstract;329
26.2;Introduction;330
26.3;Charging/Discharging Characteristics;331
26.4;Impact of Battery Temperature on the Operation Capability;332
26.5;Impact of Battery Aging on the Operation Safety;334
26.6;Conclusion;336
26.7;References;337
27;26 Study on the Establishment of Vulnerability Source Evaluation Model for the Road Traffic Safety;338
27.1;Abstract;338
27.2;Introduction;338
27.3;Transportation Complexity;339
27.3.1;Complexity Judgment;339
27.3.2;Vulnerability Model of Traffic;340
27.4;Evaluation Model of Vulnerability Source of Traffic System;341
27.4.1;The Establishment of Traffic System Vulnerability Source Level Map;342
27.4.2;Construction of the Priority Matrix;342
27.4.3;Fuzzy Consistent Matrix;342
27.4.4;The Relative Importance;342
27.4.5;Hierarchical Ordering;343
27.5;The Vulnerability Source Evaluation of Road Traffic Safety;343
27.5.1;Road Traffic Accident Hierarchy Figure;343
27.5.2;Model;344
27.5.2.1;Build the Priority Matrix;344
27.5.2.2;Fuzzy Consistent Matrix;344
27.5.2.3;Hierarchical Ordering;345
27.6;Conclusion;345
27.7;Acknowledgements;346
27.8;References;346
28;27 ABS Self-Adjustment Threshold Control Based on MATLAB;347
28.1;Abstract;347
28.2;Introduction;347
28.3;Establishing the Mathematical Model of Vehicle;348
28.4;The Establishment of ABS Logic Threshold Control and Adaptive Adjustment Algorithm;350
28.5;Control Effect;352
28.6;Conclusions;353
28.7;References;353
29;28 Failure Analysis of Metro Door System Based on Fuzzy TOPSIS;354
29.1;Abstract;354
29.2;Introduction;355
29.3;Principle and Mathematical Model of Fuzzy TOPSIS;355
29.3.1;Construct the Fuzzy Decision Matrix;356
29.3.2;Construct the Fuzzy Weighted Decision Matrix;356
29.3.3;Obtain the Closeness Coefficient;358
29.3.4;Confirm the Criticality Sequence;358
29.4;An Illustrative Example;359
29.5;Conclusion;361
29.6;Acknowledgements;362
29.7;References;362
30;29 The Gradation Relationship Model and Application of Urban Multimodal Transit Networks;363
30.1;Abstract;363
30.2;Introduction;363
30.3;The Model of Residents’ Transit Trip Distance Distribution;365
30.4;The Model of Preponderant Trip Distance of Each Transit Network;367
30.4.1;The Generalized Cost of Residents’ Transit Trip;367
30.4.2;The Establishment of Preponderant Trip Distance Model of Each Transit Network;369
30.5;The Model of Urban Multimodal Transit Networks Grade Configuration;371
30.6;Case Study;374
30.6.1;The Model of Preponderant Trip Distance of Each Transit Network;374
30.6.2;The Preponderant Trip Distance of Each Transit Network in Harbin;375
30.6.3;The Determination of the Travel Proportion of Each Transit Network;375
30.6.4;Discussion and Conclusion;377
30.7;Acknowledgements;378
30.8;References;378
31;30 Study on Emergency Response Process of Metro Emergency Based on Stochastic Petri Nets;380
31.1;Abstract;380
31.2;Introduction;380
31.3;Analysis on Emergency Response Process of Metro Emergency;381
31.3.1;Early Warning Stage Process;381
31.3.2;Decision-Making Stage Process;381
31.3.3;Implementation Stage Process;382
31.3.4;Emergency Recovery Stage Process;382
31.4;Metro Emergency Response Process SPN Model;383
31.4.1;Modeling Basic Principle;383
31.4.2;The SPN Model for Each Stage of Metro Emergency Response;384
31.4.2.1;Early Warning Stage SPN Mode;384
31.4.2.2;Decision-Making Stage SPN Mode;384
31.4.2.3;Implementation Stage SPN Mode;385
31.4.2.4;Emergency Recovery Stage SPN Mode;386
31.4.3;The SPN Mode of Metro Emergency Response;387
31.5;The SPN Mode Performance Analysis;388
31.5.1;Reachability Graph of SPN Mode;388
31.5.2;A Case Study of Beijing Metro;389
31.6;Conclusions;392
31.7;Acknowledgements;392
31.8;References;392
32;31 Layout Optimization Design of Electric Vehicle Charging Station Based on Urban Parking Lot;394
32.1;Abstract;394
32.2;Introduction;394
32.3;Layout Optimization of Charging Station;395
32.3.1;The Principle of Preliminary Address of Charging Station;395
32.3.2;Analysis of Influence Factors of Charging Station Distribution;395
32.3.3;Optimization Model for the Location;396
32.3.3.1;User’s Social Costs C1;396
32.3.3.2;The Investment Cost of Building Additional Charge Station C2;398
32.3.3.3;The Economic Loss of Parking Lot C3;399
32.3.3.4;Site Layout Optimization Model;399
32.4;Case Analysis;400
32.5;Conclusions;401
32.6;Acknowledgements;401
32.7;References;401
33;32 Study on the Changes of EEG Signal and Driving Behavior Based on the Driving Simulator;403
33.1;Abstract;403
33.2;Introduction;403
33.3;Materials and Methods;404
33.3.1;Experimental Equipment;404
33.3.2;Experiment Participants;404
33.3.3;Experiment Design;405
33.3.4;EEG Data Collection and Preprocessing;405
33.3.5;EEG Energy of Each Frequency Band;405
33.4;Results;406
33.4.1;EEG Data Analysis and Discussion;406
33.4.2;Driving Simulator Data Analysis and Discussion;410
33.5;Conclusions;412
33.6;Acknowledgements;413
33.7;References;413
34;33 Evaluating the Effectiveness of Speed Bumps: An Empirical Study in Campus;415
34.1;Abstract;415
34.2;Introduction;415
34.3;Data Collection;416
34.4;Data Analysis;418
34.5;Deceleration Effectiveness Evaluation;420
34.6;Conclusions;421
34.7;Acknowledgements;421
34.8;References;421
35;34 Traffic Signal Optimization Based on System Equilibrium and Bi-level Multi-objective Programming Model;423
35.1;Abstract;423
35.2;Introduction;423
35.3;Bi-level Programming Problem;425
35.4;Bi-level Multi-objective Programming Model;425
35.4.1;The Upper-Level Model;425
35.4.2;The Lower-Level Model;427
35.4.3;Bi-level Multi-objective Programming Model;427
35.5;Heuristic Particle Swarm Optimization Algorithm;428
35.6;Numerical Application;428
35.6.1;? = 0, ? = 1;429
35.6.2;? = 0.5, ? = 0.5;430
35.6.3;The Comparison of Optimization Results;430
35.7;Summary;431
35.8;References;431
36;35 Research on Fundamental Solutions to Curb Parking Problems in City;433
36.1;Abstract;433
36.2;Background;433
36.3;Fundamental Solutions to Curb Parking Problems;434
36.3.1;Perfection of Public Transportation System;434
36.3.2;Encouraging the Construction of Mechanical Three-Dimensional Parking Lot;436
36.3.3;Prohibition of Raising Parking Fee Blindly;437
36.3.4;Perfection of Park-and-Ride Facilities;437
36.3.5;Improvement of Overall Information Intelligent Parking Guidance System;438
36.4;Conclusions;439
36.5;References;439
37;36 Empirical Analysis of Hypothetical Bias in Stated-Preference Experiments;440
37.1;Abstract;440
37.2;Introduction;441
37.3;Literature Review;442
37.4;Data Spectrum for Empirical Analysis;443
37.4.1;Notation;443
37.4.2;Experimental Design;444
37.4.3;Data Description;445
37.5;Identifying HB in Market Share Prediction;447
37.5.1;Stage 1: Selection;447
37.5.2;Stage 2: Calibration;450
37.5.3;Stage 3: Simulation;451
37.6;HB Measurement by VOT;452
37.6.1;Improvement on VOT Model;452
37.6.2;Result Discussion;453
37.7;Conclusions and Future Work;454
37.8;Acknowledgements;455
37.9;References;455
38;37 Real-Time Density-Based on-Ramp Metering Algorithm Considering Multi-Lane of Mainstream;457
38.1;Abstract;457
38.2;Introduction;458
38.3;Literature Review;459
38.4;On-ramp Metering Algorithm;460
38.4.1;Objective;460
38.4.2;Algorithm;461
38.5;Simulation and Discussion;466
38.5.1;Simulation;466
38.5.2;Result Discussion;467
38.6;Conclusion;468
38.7;Acknowledgements;469
38.8;References;469
39;38 Vehicle Driving Characteristics on Rural Highways and the Evaluation of Stability Performance Based on Lorenz Scatter Plot;471
39.1;Abstract;471
39.2;Introduction;471
39.3;Method and Material;473
39.3.1;Data Collection;473
39.3.2;Types of Vehicle Driving Trajectory on Rural Highways;473
39.4;The Evaluation Analysis of Vehicle Driving Stability on Different Trajectories;474
39.4.1;The Lorenz Scatter Plot;475
39.4.2;The Lorenz Scatter Plot in Analysis of Vehicle Handling Stability;476
39.4.3;Indicator to Reflect Vehicle Driving Stability;479
39.4.4;Vehicle Driving Stability on Different Types of Driving Trajectories;481
39.5;Discussion;483
39.6;Conclusions;484
39.7;Acknowledgements;485
39.8;References;485
40;39 Pedestrian Detection and Counting in Crowded Scenes;487
40.1;Abstract;487
40.2;Introduction;488
40.3;Methodology;490
40.3.1;Detection Region Configuration;491
40.3.2;Human Head Detection;492
40.3.2.1;Candidate Head Region;492
40.3.2.2;Head Contour Extraction;495
40.3.2.3;Head Localization;496
40.3.3;Matching;498
40.4;Experimental Results;499
40.5;Conclusion;501
40.6;Acknowledgments;501
40.7;References;502
41;40 Coordinated Carpool Route Selection and Optimization for Dynamic Uncertain Demand Based on Connected Vehicles;504
41.1;Abstract;504
41.2;Introduction;505
41.3;Review on Related Researches;505
41.4;Algorithm on Coordinated Carpool Route Selection with Dynamic Uncertain Demand;506
41.4.1;Solve the Distance and Cost by Dijkstra’s Algorithm and Distance Matrix Algorithm;507
41.4.2;Solve the Distance Between Any Two Nodes and Construct the Cost Function by Distance Matrix;508
41.4.2.1;Distance Matrix;508
41.4.2.2;Calculate the Total Cost of Unit Distance of the Route;509
41.4.3;Calculate the Travel Time Using Resistance Function;509
41.4.4;Comprehensive Weight Calculation;511
41.5;Selection and Optimization of Coordinated Carpool Route Based on Dynamic and Uncertain Demand—a Case Study of Huai’an, Jiangsu;511
41.6;Conclusion;515
41.7;Acknowledgements;516
41.8;References;516
42;41 A Research on Traffic Conflict Characteristics of Vehicles Going Straight or Turning Right at Large Intersections;518
42.1;Abstract;518
42.2;Introduction;518
42.3;Data Description;519
42.3.1;Introduction to the Intersection;519
42.3.2;Investigation Method of Conflict;520
42.4;Analytical Methods of Traffic Conflicts;520
42.4.1;Conflict Analysis;520
42.4.2;Analysis of Conflict Severity;520
42.5;Analysis of Time Distribution Characteristics;521
42.5.1;Classification of the Peak and the Flat;521
42.5.2;Comparison of Conflict Rates;522
42.5.3;Comparison of Severity Degrees;522
42.6;Analyses of Space Distribution Characteristics;524
42.6.1;Region Division;524
42.6.2;Comparison of Conflict Rates;524
42.6.3;Comparison of Severity Levels;525
42.7;Conclusion;526
42.8;References;526
43;42 Summary and Development Trend of Traffic Equilibrium Research;527
43.1;Abstract;527
43.2;Introduction;528
43.3;The Cognition of Traffic Equilibrium and Its Research Status;528
43.3.1;The Principles of Traffic Equilibrium: User Equilibrium and System Optimum;528
43.3.2;The Predicament of Balanced Traffic Assignment Models;529
43.3.3;The Dilemma of Traffic Demand Management in Reality;530
43.4;The Status of Research on Realization Mechanism of Traffic Equilibrium;530
43.4.1;Dynamic System Models Based on Day-to-Day Dynamics of Traffic Flow;531
43.4.2;The Evolutionary Dynamics Based on Evolutionary Game Theory;532
43.4.3;The Learning Model Based on Individual Behavior;532
43.5;The Development and Prospect of Researches on Realization Mechanisms of Traffic Equilibrium;533
43.5.1;The Development Direction of Researches on Realization Mechanisms of Traffic Equilibrium;533
43.5.2;Complex Adaptive System Theory and Its Application in Social and Economic Fields;533
43.5.3;The Prospect of Applying Complex Adaptive System Theory to Research the Realization Mechanism of Traffic Equilibrium;534
43.6;Conclusion;535
43.7;References;536
44;43 Traffic Network Structure of Internet of Vehicles;539
44.1;Abstract;539
44.2;Introduction;539
44.3;Network Model;541
44.4;Communication Technology;542
44.5;Component Connectivity;544
44.5.1;Connectivity Between Vehicle and Vehicle;544
44.5.2;Connectivity Between Vehicle and Infrastructure;545
44.5.3;Connectivity Between Vehicle and Person;546
44.5.4;In-Vehicle Communication;547
44.6;Challenges;548
44.7;Conclusion;549
44.8;Acknowledgements;549
44.9;References;549
45;44 Prediction of Urban Rail Traffic Flow Based on Multiply Wavelet-ARIMA Model;551
45.1;Abstract;551
45.2;Introduction;552
45.3;Wavelet-ARIMA Model Building Process;553
45.4;Introduction of Principle;554
45.4.1;Denoising Principle Based on Wavelet Analysis;554
45.4.2;Product Model of ARIMA;556
45.5;Experimental Analysis;557
45.5.1;Missing Data;557
45.5.2;Wavelet Analysis;558
45.5.3;ARIMA Model;559
45.5.4;Model Validation;564
45.6;Conclusions;565
45.7;Acknowledgements;565
45.8;References;565
46;45 Simulation of Rural Vehicle Emissions Using Instantaneous Emission Model;567
46.1;Abstract;567
46.2;Introduction;567
46.3;Experimental Section;568
46.3.1;Tested Vehicles;569
46.3.2;Testing Equipments;569
46.4;Instantaneous Emission Model;570
46.5;Results and Discussions;571
46.6;Conclusions;574
46.7;Acknowledgements;574
46.8;References;574
47;46 Vehicle Routing Model and Algorithm Study for the Network of Container Transportation with Dumping Trailers Under Hard Time Window Constraint;576
47.1;Abstract;576
47.2;Introduction;576
47.3;Study Overview;577
47.4;Model Building;578
47.4.1;Model Overview;578
47.4.2;Hypotheses;578
47.4.3;Parameter and Variable Setting;579
47.4.4;Objective Function;580
47.4.5;Constraint Conditions;580
47.5;Solution Algorithm;581
47.6;Case Analysis;582
47.7;Conclusion;584
47.8;Acknowledgements;584
47.9;References;585
48;47 A Dynamic Model of Post-disaster Search and Rescue Considering Information Uncertainty;586
48.1;Abstract;586
48.2;Introduction;586
48.3;The Assumptions;588
48.3.1;The Behavior of Search and Rescue;588
48.3.2;The Basic Assumption;588
48.4;The Expected Search Time and Waiting Time;589
48.4.1;The Expected Search Time;589
48.4.2;Waiting Time;590
48.5;The Influence of Information on SAR;591
48.6;The Uncertain Information and Distribution Model;592
48.6.1;The Distribution of SAR Teams;592
48.6.2;The Distribution Model;593
48.7;A Solution Algorithm;593
48.8;Conclusion;594
48.9;Acknowledgements;595
48.10;References;595
49;48 Study on Optimization and Adjustment Method of Urban Public Transport Network Based on Evolutionary Analysis;596
49.1;Abstract;596
49.2;Introduction;597
49.3;The Complexity Analysis of Evolution;597
49.3.1;Evolutionary Basis;597
49.3.2;Complexity of Network Entitlement Evolution;597
49.3.3;Complexity of Evolutionary Mechanism;598
49.4;Evolutionary of Models;598
49.4.1;Evolutionary of Model Construction;598
49.4.2;Evolutionary Mechanism;599
49.4.3;Model Evolutionary Processes and Algorithms;600
49.4.4;Simulation Analysis;601
49.5;Optimization and Adjustment of Model;603
49.5.1;Evolutionary Model Construction;603
49.5.2;Evolutionary Mechanism;603
49.5.3;Model Evolutionary Processes and Algorithms;604
49.5.4;Simulation Analysis;604
49.6;Conclusions;605
49.7;Acknowledgments;606
49.8;References;606
50;49 A Classification Method for Accesses on Suburban Highway;607
50.1;Abstract;607
50.2;Introduction;607
50.3;Methodology;608
50.3.1;Preliminary Classification;608
50.3.2;Soundness Verification;610
50.3.2.1;Evaluation Index;610
50.3.2.2;T-Test;610
50.4;Data Collection;611
50.4.1;Investigation Method;611
50.4.2;Essential Data;611
50.5;Data Analysis;612
50.5.1;Conflict Rate;612
50.5.2;Significance Test of Classification;613
50.6;Conclusion;614
50.7;Acknowledgments;614
50.8;References;614
51;50 A New Method of Code Generation for MC9S12 ECU;615
51.1;Abstract;615
51.2;Introduction;615
51.3;Method;616
51.3.1;C# Interface Development;617
51.3.2;Low Driver Development;619
51.3.3;Process Layer MATLAB;620
51.4;Results;621
51.5;Conclusion;624
51.6;References;625
52;51 Simulation and Evaluation of Guidance Strategies in the Park and Ride Condition;626
52.1;Abstract;626
52.2;Introduction;627
52.3;Feedback Traffic Guidance Strategies;628
52.3.1;Dynamic User Equilibrium;628
52.3.2;Feedback Guidance Strategies;629
52.3.2.1;Bang-Bang Strategy;629
52.3.2.2;P Strategy;629
52.3.2.3;PI Strategy;630
52.4;Multimodal Traffic Travel Cost Model;630
52.4.1;The Generalized Travel Cost of the Road Network;630
52.4.2;The Generalized Travel Cost of the Metro Network;631
52.5;Simulation Test;631
52.5.1;Description of the Test Network;631
52.5.2;Simulation Parameter Design;632
52.5.3;Simulation Results;632
52.6;Conclusion;633
52.7;Acknowledgements;636
52.8;References;636
53;52 Study on Evaluation Method of Reconstruction and Extension Expressway Alignment Based on Operating Speed;638
53.1;Abstract;638
53.2;Introduction;639
53.3;Analysis on Alignment Evaluation Index;639
53.3.1;Basic Requirements of Expressway Alignment Design;639
53.3.2;Evaluation Method of Expressway Alignment;639
53.3.3;Existing Research Review;640
53.4;Establishment of Alignment Adaptability Evaluation System;640
53.4.1;Selection of Evaluation Indicators;640
53.4.1.1;Continuity Evaluation Index;640
53.4.1.2;Comfort Evaluation Index;641
53.4.1.3;Safety Evaluation Index;641
53.4.2;Establishment of Alignment Adaptability Evaluation Model;642
53.4.3;Solution of Model Coefficients;644
53.5;Engineering Application;645
53.5.1;Data Acquisition;646
53.5.2;Calculation of Alignment Adaptive Coefficient;646
53.6;Conclusions;650
53.7;References;650
54;53 Transfer Passenger Distribution Prediction on Flow Lines in Transportation Terminal;652
54.1;Abstract;652
54.2;Introduction;652
54.3;Forecasting Method;653
54.3.1;Traffic Assignment Model;653
54.3.2;Required Data for Forecasting;654
54.4;Case Study;654
54.4.1;Passenger Flow Analysis;654
54.4.2;Passenger Flow Assignment on Transfer Flow Lines;655
54.4.3;Optimization on Flow Lines;658
54.5;Conclusion;658
54.6;Acknowledgements;659
54.7;References;659
55;54 Critical Safety Distance Model of Human-Vehicle Unit Based on Traffic Conflict at Urban Intersections;660
55.1;Abstract;660
55.2;Introduction;660
55.3;Analysis of Driver Behavior;661
55.4;Critical Conflict Zone Model at Intersections;662
55.4.1;Conflict Analysis at Intersections;662
55.4.2;Critical Conflict Distance Model in Conflict Points;663
55.4.3;Critical Conflict Distance Model in Merging Points;666
55.5;Calculation Examples;668
55.6;Conclusions;670
55.7;References;671
56;55 Research on the Vehicle–Bicycle Conflict Model at Signalized Intersection;672
56.1;Abstract;672
56.2;Introduction;672
56.3;Analysis of the Traffic Conflict Type;673
56.3.1;Two-Phase Signalized Intersection;673
56.3.2;Three-Phase Signalized Intersection;674
56.4;Establishment of Conflict Model;675
56.5;Analysis of the Actual Examination;678
56.6;Conclusions;679
56.7;References;679
57;56 Research of Variable Lane Control Method in the Emergency Evacuation Area;681
57.1;Abstract;681
57.2;Introduction;681
57.3;The Establishment of the Model of Controlling the Variable Lane Based on Traffic Network;682
57.4;Algorithm Based on Harmony Search;684
57.5;Simulation Verify;685
57.5.1;Simulation Data Instruction;685
57.5.2;Designing Simulation Environment;687
57.5.3;Analyze the Outcome of Comparison;688
57.6;Conclusion;690
57.7;Acknowledgements;690
57.8;References;690
58;57 Modeling the Traction Energy Consumption for Urban Rail Line Considering Operation Characteristics;692
58.1;Abstract;692
58.2;Introduction;693
58.3;Literature Review;693
58.4;Energy Consumption Modeling;695
58.4.1;Dynamics Analysis of Urban Rail Transit Train Operation;696
58.4.2;Explanatory Variables;698
58.4.3;Model Structure;699
58.5;Data;701
58.6;Results and Discussion;701
58.6.1;Parameters Estimation;701
58.6.2;Model Validation;703
58.6.3;Model Improving Based on Seasonal Variation;703
58.7;Conclusions;706
58.8;Acknowledgements;707
58.9;References;707
59;58 Calculation Method of Traffic Capacity in Airport Curbside;709
59.1;Abstract;709
59.2;Introduction;709
59.3;Traffic Characteristics in Airport Departure Curbside;710
59.3.1;Curbside Layout;710
59.3.2;Influencing Factors;711
59.3.2.1;Arrival Rate;711
59.3.2.2;Parking Time;711
59.3.2.3;Headway;711
59.3.2.4;Number of Parking Spaces;712
59.4;Departure Curbside Capacity Analysis;712
59.4.1;Parking Lane;712
59.4.2;Transit Lane;712
59.4.3;Weaving Lane;713
59.4.3.1;Assumptions;713
59.4.3.2;Model Construction;713
59.4.3.2.1;Non-overflow of Parking Lane;714
59.4.3.2.2;Overflow of Parking Lane;714
59.4.4;Departure Curbside Service Capacity Model;714
59.4.4.1;Lane Group with Two Lanes;715
59.4.4.2;Lane Group with Three Lanes;715
59.5;Case Study;715
59.5.1;BCIA T3 Terminal Curbside Layout;715
59.5.2;Traffic Characteristics;716
59.5.2.1;Arrival of the Curbside;716
59.5.2.2;Parking Time;717
59.5.2.3;Headway;718
59.5.3;Curbside Service Capacity Analysis;718
59.5.4;Simulation;718
59.6;Conclusion;720
59.7;References;720
60;59 Analysis of an Intersection Based on Active Priority Strategies;721
60.1;Abstract;721
60.2;Introduction;721
60.3;Active Priority Strategy and Parameter Optimizing;722
60.3.1;Minimum Green Time;723
60.3.2;Green Extension Time by Unit;724
60.3.3;Maximum Green Time;724
60.4;Evaluation Index of a Signal Control Intersection;724
60.5;Case Study;725
60.5.1;General Situation of the Intersection;726
60.5.2;Optimizing of Current Fixed-Time Signal Control;726
60.5.3;The Process of Active Priority Strategy;727
60.5.3.1;The Configuration of Detectors;727
60.5.3.2;The Control Parameters of APS;728
60.5.3.3;Programming of APS;728
60.5.4;Analysis of Simulation;731
60.6;Conclusion;733
60.7;References;733
61;60 Study on Evaluation Index System of Urban Green Traffic Planning;735
61.1;Abstract;735
61.2;Introduction;735
61.3;Evaluation Objectives;736
61.4;Evaluation Contents and Procedures;737
61.5;Evaluation Index Selection;737
61.5.1;Evaluation Indicators of Pedestrian Traffic Planning;739
61.5.2;Evaluation Indicators of Public Transport Planning;740
61.5.3;Bicycle Traffic Planning Evaluation Index;742
61.5.4;Environmental Impact Indicators;743
61.5.5;Passenger and Freight Transport Evaluation Index;744
61.6;Conclusion;745
61.7;References;745
62;61 Analyzing the Relationship Between Urban Macroeconomic Development and Transport Infrastructure System Based on Neural Network;747
62.1;Abstract;747
62.2;Introduction;748
62.3;Data Preparation;748
62.3.1;Selection of the Independent Variable Indicators;748
62.3.2;Selection of the Dependent Variable Indicators;749
62.4;Extraction Factor Based on PCA;751
62.4.1;Reliability Analysis;751
62.4.2;Factors Extraction Base on PCA;751
62.5;Established Model Based on BP Neural Network;752
62.5.1;Function Selection;752
62.5.2;Established the Model;753
62.6;Case Study;753
62.6.1;Data Preparation and Analysis;754
62.6.1.1;Reliability Analysis;754
62.6.1.2;Factors Extraction Base on PCA;755
62.6.2;Established the Model;755
62.6.3;Conclusion Analysis;757
62.7;Conclusion;758
62.8;References;758
63;62 Real-Time Traffic Incident Detection with Classification Methods;760
63.1;Abstract;760
63.2;Introduction;761
63.3;Data Description;762
63.4;Methodology;762
63.4.1;Support Vector Machine (SVM);762
63.4.2;Naïve Bayes (NB);763
63.4.3;Cart Algorithm;764
63.4.4;AdaBoost-Cart (ACT);765
63.5;Performance Criteria;766
63.6;Result;767
63.6.1;Parameter Selection;767
63.6.2;Comparison;769
63.7;Conclusion;770
63.8;Acknowledgements;770
63.9;References;770
64;63 Mobile Internet+ Campus Bicycle Sharing System Planning;772
64.1;Abstract;772
64.2;Introduction;772
64.3;The General Design of Campus Bicycle Sharing System;773
64.3.1;Design Concept;773
64.3.2;System Structure;773
64.4;System Component Description;774
64.4.1;Management Protocol;774
64.4.2;Planning of Sharing Stations;774
64.4.3;Design of Intelligent Dynamic Password Lock;777
64.4.4;Client Application Design;778
64.5;Application Prospect;779
64.6;Conclusion;779
64.7;Acknowledgment;780
64.8;References;780
65;64 Analysis of the Homogeneity of Driver Behaviors at Intersections;781
65.1;Abstract;781
65.2;Introduction;781
65.3;Methods;783
65.3.1;Basic Information of the Intersection Surveyed;783
65.3.2;Data Processing and Analysis;784
65.4;Analysis of Driver Behaviors;785
65.4.1;Analysis of Vehicle Velocities;785
65.4.2;Analysis of the Homogeneity of Vehicle Trajectories;787
65.5;Conclusions;789
65.6;Acknowledgements;790
65.7;References;790
66;65 Comparative Analysis of the Public Transit Modes Based on Urban Area Location Theory;791
66.1;Abstract;791
66.2;Introduction;791
66.3;Definition of New District;792
66.4;Comparison Among Public Transit Modes Oriented in the New District;792
66.4.1;Comparison Between BRT and Rail Transit;792
66.4.2;Comparison Between BRT and Traditional Bus;795
66.5;Conclusion;798
66.6;Acknowledgements;798
66.7;References;798
67;66 Survival Analysis on Passing Time of Minor Vehicle’s Road Crossing at Un-Signalized Intersection in China;800
67.1;Abstract;800
67.2;Introduction;801
67.3;Literature Review;802
67.4;Data;804
67.4.1;Test Sites;804
67.4.2;Data Collection;804
67.4.3;Videotape Coding;804
67.5;Model;806
67.6;Survival Analysis and Hazard-Based Duration Model;807
67.7;Empirical Results;808
67.8;The Analysis of Passing Time;809
67.9;Effects of Explanatory Variables;810
67.10;The Model of Passing Time 1;811
67.11;The Model of Passing Time 2;812
67.12;The Model of Whole Passing Time;813
67.13;Conclusions;814
67.14;Acknowledgements;815
67.15;References;815
68;67 The Detection and Precision Analysis of Bright Color Vehicles Based on Remote Sensing Image;817
68.1;Abstract;817
68.2;Introduction;817
68.3;The Extraction Method of Bright Color Vehicles from Remote Sensing Image;818
68.3.1;The Image Enhancement;818
68.3.2;Image Segmentation;819
68.3.3;The Image Classification;819
68.4;The Extraction of Bright Color Vehicles;820
68.5;Accuracy Evaluation;822
68.6;Conclusion;823
68.7;Acknowledgements;823
68.8;References;823
69;68 Segment Division Analysis of the Low-Grade Roads Traffic Flow Access in Suburban Area;824
69.1;Abstract;824
69.2;Introduction;824
69.3;Characteristics of Road Section;825
69.4;Segment Division of Roads;825
69.4.1;General Rules of Classification;825
69.4.2;Qualitative Divisions;826
69.4.2.1;Study on Division Methods;826
69.4.2.2;Specific Division;826
69.4.3;Quantitative Divisions;827
69.4.3.1;Study on Division Methods;827
69.4.3.2;Specific Division;828
69.5;Case Study;833
69.5.1;Traffic Survey;833
69.5.2;Sector Divisions;833
69.6;Conclusion;835
69.7;References;836
70;69 Study on the Geometric Design Method of Access on the Urban Fringe and Villages Segment;837
70.1;Abstract;837
70.2;Background;837
70.3;Methodology;839
70.4;Data Analysis;839
70.4.1;The Influencing Factors of Minimum Turning Speed on the Access;839
70.4.2;Influence of Access Speed on Traffic Safety;841
70.4.2.1;Reducing the Risk of Serious Traffic Conflict Within the Scope of Access;841
70.4.2.2;Reducing the Accident Risk of Pedestrian and Non-Motorized Vehicle in the Area of Access;841
70.4.3;Study on Access Design Speed;843
70.5;Case Study of Improving Access Geometry Design;844
70.5.1;Situation of the Access and Security Risk Analysis;844
70.5.2;Design of Access Geometry Improvement Scheme;845
70.5.3;Evaluation of Geometric Design Improvement Scheme for Access;847
70.6;Conclusions and Prospects;849
70.7;References;849
71;70 Stochastic Traffic Assignment Model Considering Park & Ride Network and Travel Time Reliability;851
71.1;Abstract;851
71.2;Introduction;852
71.3;Literature Review;852
71.4;Traffic Assignment Model Based on P&R and Network Reliability;854
71.4.1;Travel Time Reliability Evaluation of Motor Vehicle Link;854
71.4.2;Calculation of Travel Time Reliability Refers to the Transfer Between Motor Vehicle and Subway;855
71.4.3;Function of Travel Cost;856
71.4.4;Modeling Structure;857
71.5;Solution Algorithm;858
71.5.1;Initialization;858
71.5.2;Updating the Link Travel Cost;859
71.5.3;Determining the Search Direction;859
71.5.4;Updating Link Traffic Flow;859
71.5.5;Convergence Criterion;859
71.6;Empirical Application;860
71.7;Conclusion;863
71.8;Acknowledgements;863
71.9;References;863
72;71 Inverse Kinematics Model’s Parameter Simulation for Stewart Platform Design of Driving Simulator;865
72.1;Abstract;865
72.2;Introduction;865
72.3;Research Method;866
72.3.1;Inverse Kinematics of the Stewart Platform;867
72.3.2;Program Simulation in MATLAB/Simulink;869
72.3.3;Simulation Experiment;871
72.4;Simulation Results and Discussion;872
72.4.1;Simulation of Bump Scene;872
72.4.2;Simulation of Pitch Scene;873
72.4.3;Simulation of Yaw Scene;874
72.5;Conclusion;875
72.6;Acknowledgements;875
72.7;References;875
73;72 Grid-Based Framework for Railway Track Health Evaluation;877
73.1;Abstract;877
73.2;Introduction;877
73.3;Definition and Division of Track Grids;879
73.4;Condition Evalutaion of Track Grids;880
73.4.1;A Condition Evaluation Index System of Track Grids;880
73.4.2;Track Grid Health Index;880
73.5;Railway Track Grid Health Evaluation Framework;881
73.5.1;Core Components;881
73.5.2;PCA Model;882
73.5.3;Hybrid Hierarchical k-Means Clustering Model;882
73.6;Empirical Analysis;883
73.6.1;Overview;883
73.6.2;Analysis of Results;884
73.6.3;Evaluation of Results;886
73.7;Conclusions;890
73.8;Acknowledgments;890
73.9;References;890
74;73 Efficiency Evaluation Model of Car Sharing for Low-Income People;892
74.1;Abstract;892
74.2;Introduction;892
74.3;Literature Review;893
74.4;Efficiency Evaluation Model of Car Sharing in Big Cities of China;894
74.4.1;Basic Method;894
74.4.2;Comparing with AHP and FCE;894
74.4.3;Evaluation Index System of Car Sharing;895
74.5;Date Analysis;895
74.5.1;Definition of Low-Income People;895
74.5.2;Travel Characters of Low-Income People;897
74.6;Efficiency Evaluation Model of Car Sharing for Low-Income People;898
74.6.1;Evaluation Index System;898
74.6.2;Calculation of Evaluation Indexes;899
74.6.3;Calculation of Efficiency Evaluation Model;899
74.7;Results;899
74.8;Conclusions;900
74.9;Acknowledgements;900
74.10;References;901
75;74 Railway Energy Consumption Analysis Based on Regression Model;902
75.1;Abstract;902
75.2;Analysis of the Energy Consumption Factors of Railway Transportation;903
75.3;Relative Analysis of the Energy Consumption of the Railway Transportation;904
75.4;Regression Model of the Energy Consumption of the Railway Transportation;906
75.4.1;Regression Analysis of the Comprehensive Energy Consumption Per Unit Transportation Workload;908
75.4.2;Regression Analysis of Sulfur Dioxide Emissions;909
75.5;Conclusion;910
75.6;Acknowledgements;911
75.7;References;911
76;75 Research on Parking Choice Model Based on Shared Private Parking Space;912
76.1;Abstract;912
76.2;Introduction;913
76.3;Choice Factors for Shared Private Parking;913
76.4;Parking Choice Model for Shared Private Parking;916
76.4.1;Initial Selection;916
76.4.2;Alternative Optimal Route Selection;916
76.4.3;Shared private parking finalization;919
76.5;Application;922
76.6;Conclusion;925
76.7;References;925
77;76 Mining Method for Road Traffic Network Synchronization Control Area;926
77.1;Abstract;926
77.2;Introduction;926
77.3;Road Traffic Network Modularity Construction;927
77.3.1;Weight Calculation;927
77.3.2;Road Traffic Network Modularity Modeling;928
77.4;Partition of Synchronous Control Area based on Road Traffic Network Modularity;929
77.4.1;The Identification of Key Node;929
77.4.2;Condensation Algorithm of Road Traffic Network Modularity Maximized;930
77.4.3;Steps of Synchronous Control Area Partition;931
77.5;Model Validation;932
77.6;Conclusions;935
77.7;Acknowledgements;936
77.8;References;936
78;77 Research of Embedded Real-Time Passenger Flow Detection Equipment;937
78.1;Abstract;937
78.2;Introduction;938
78.3;Algorithm Design of Passenger Flow Detection Equipment;938
78.4;The Structure and Hardware Design of the Passenger Flow Detection Equipment;941
78.4.1;Structure of Passenger Flow Detection Equipment;941
78.4.2;Hardware Design of Passenger Flow Detection Equipment;942
78.5;Software Design of Passenger Flow Detection Equipment;943
78.5.1;Software Design of Intelligent Video Analysis Unit;943
78.5.2;Software Design of Equipment Management Unit;945
78.5.3;Software Design of Video Transmission Unit;945
78.6;Result of Experiment;945
78.7;Conclusion;947
78.8;Acknowledgments;947
78.9;References;947
79;78 Optimal Model of Timetable Under the Influence of Train Speed on the Utilization Rate of Regenerative Braking;949
79.1;Abstract;949
79.2;Introduction;949
79.3;Problem Description and Modeling;952
79.4;Experimental Studies;957
79.5;Conclusions;961
79.6;Acknowledgements;962
79.7;References;962
80;79 Analysis of Spatial–Temporal Characteristics Based on Mobile Phone Data;965
80.1;Abstract;965
80.2;Introduction;965
80.3;Collection of Mobile Phone Data;966
80.3.1;Interpretation of Mobile Phone Signaling;966
80.3.2;Mobile Phone Data Denoising;966
80.4;Analysis of Mobile Phone Data Application in Urban Transportation Planning;968
80.4.1;Analysis of the Application of the Mobile Phone Data;968
80.4.2;Research Framework of Urban Traffic Characteristics of Mobile Phone Data;969
80.4.3;Research Area;970
80.5;Key Technologies of Trip Characteristics Analysis Based on Mobile Phone Data;970
80.5.1;OD Estimation;970
80.5.2;Recognition of the Purpose of Trips;971
80.5.3;Links Counts Detection;972
80.6;Conclusion;973
80.7;References;973
81;80 Analysis of Connection Mode and Type Between Regional Line and Urban Line of Urban Rail Transit;975
81.1;Abstract;975
81.2;Introduction;975
81.3;Analysis of Influencing Factors on Connection Mode;976
81.3.1;Influence of Basic Characteristics of the City on the Connection of Regional Line and Urban Line;976
81.3.2;Influence of Hierarchical System of Rail Transit System on the Connection of Regional Line and Urban Line;977
81.3.3;Influence of Passenger Flow on the Connection of Regional Line and Urban Line;977
81.4;Analysis of Connection Mode and Type Between Regional Line and Urban Line;978
81.4.1;Transferring at Single Point;978
81.4.1.1;Connection Mode and Types;978
81.4.1.2;Single Point of Convergence Transfer Problems that Need Attention;978
81.4.1.3;Select the Point of Convergence;979
81.4.2;Transferring at Multi-points;979
81.4.2.1;Connection Mode and Types;979
81.4.2.2;Functional Orientation After Regional Line Introduced to the Urban Segment;980
81.4.2.3;The Selection of Rout Position and Connection Points After Regional Line Is Introduced to the City Center;980
81.4.3;Collinear Operation;981
81.4.3.1;Connection Modes and Type;981
81.4.3.2;Collinear Adaptation Convergence Condition;982
81.4.3.3;Organization of Collinear;982
81.5;Conclusions;983
81.6;References;983
82;81 Demand Forecasting-Based Layout Planning of Electric Vehicle Charging Station Locations;985
82.1;Abstract;985
82.2;Introduction;986
82.3;Forecasting Charging Demand;986
82.3.1;Forecasting Traditional Automobile Ownership;987
82.3.2;Forecasting Future EV Ownership;987
82.3.3;Forecasting the EV Charging Demand;988
82.4;Building the Model to Layout the Charging Stations;989
82.4.1;Locating the Charging Station in the Model Follows the Principles Below;989
82.4.2;Model to Build;989
82.5;Practical Example;992
82.5.1;Forecasting the Number of EVs;992
82.5.2;Calculating the Charging Demand;994
82.5.3;Locating the Charging Station;995
82.6;Conclusion;996
82.7;Acknowledgements;996
82.8;References;996
83;82 Geometric Safety Design of Freeway off-Ramp-Street Terminal Based on Traffic Flow Characteristic Analysis;998
83.1;Abstract;998
83.2;Introduction;999
83.3;Methodology;1000
83.3.1;Traffic Flow Characteristics of Terminal;1000
83.3.2;Geometric Safety Design of Terminal;1002
83.3.2.1;Site Selection of Terminal;1002
83.3.2.2;Key Points of Geometric Safety Design;1003
83.4;Case Study;1005
83.4.1;Current Situation of the Terminal;1005
83.4.2;Geometric Safety Design of the Terminal;1005
83.4.3;Evaluation of the Improvement;1006
83.5;Conclusion;1007
83.6;References;1008
84;83 A Novel Planning of Vest-Pocket Park in Historic Urban Area in Metropolis: A Case Study of Beijing;1010
84.1;Abstract;1010
84.2;Introduction;1010
84.3;Study Area;1012
84.4;Data Analyses;1012
84.4.1;Analyses of Existing Parks;1012
84.4.2;Analyses of Population Density;1014
84.4.3;Analyses of Conservation and Utilization;1015
84.5;Problems and Solutions;1017
84.5.1;Problems of the Site;1017
84.5.2;Solutions and Planning Guidelines;1017
84.6;Methodology and Planning Scheme;1019
84.6.1;Methodology;1019
84.6.1.1;Planning According to Population Distribution Feature;1019
84.6.1.2;Suitability Evaluation;1019
84.6.2;Planning Scheme;1022
84.7;Conclusion;1027
84.8;References;1028
85;84 The Optimization of Intersection Signal in the Situation of Data Loss;1029
85.1;Abstract;1029
85.2;Introduction;1030
85.3;Intersection Situation and Data Collection;1031
85.3.1;Intersection Situation;1031
85.3.2;Traffic Acquisition and Processing;1031
85.4;Optimization of Intersection Signal Timing;1032
85.5;The Simulation and Analysis;1033
85.6;Conclusions;1036
85.7;Acknowledgements;1036
85.8;References;1036



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.