E-Book, Englisch, 542 Seiten
Walker Data Cleaning and Exploration with Machine Learning
1. Auflage 2022
ISBN: 978-1-80324-591-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Get to grips with machine learning techniques to achieve sparkling-clean data quickly
E-Book, Englisch, 542 Seiten
ISBN: 978-1-80324-591-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Data Cleaning and Exploration with Machine Learning".
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsvisualisierung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
Weitere Infos & Material
Table of Contents - Examining the Distribution of Features and Targets
- Examining Bivariate and Multivariate Relationships between Features and Targets
- Identifying and Fixing Missing Values
- Encoding, Transforming, and Scaling Features
- Feature Selection
- Preparing for Model Evaluation
- Linear Regression Models
- Support Vector Regression
- K-Nearest Neighbor, Decision Tree, Random Forest and Gradient Boosted Regression
- Logistic Regression
- Decision Trees and Random Forest Classification
- K-Nearest Neighbors for Classification
- Support Vector Machine Classification
- Naive Bayes Classification
- Principal Component Analysis
- K-Means and DBSCAN Clustering